GPU-Accelerated Collision Analysis of Vehicles in a Point Cloud Environment

We present a GPU-accelerated collision detection method for the navigation of vehicles in enclosed spaces represented using large point clouds. Our approach takes a CAD model of a vehicle, converts it to a volumetric representation or voxels, and computes the collision of the voxels with a point clo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE computer graphics and applications. - 1991. - 42(2022), 5 vom: 07. Sept., Seite 37-50
1. Verfasser: Shah, Harshil (VerfasserIn)
Weitere Verfasser: Ghadai, Sambit, Gamdha, Dhruv, Schuster, Alex, Thomas, Ivan, Greiner, Nathan, Krishnamurthy, Adarsh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE computer graphics and applications
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present a GPU-accelerated collision detection method for the navigation of vehicles in enclosed spaces represented using large point clouds. Our approach takes a CAD model of a vehicle, converts it to a volumetric representation or voxels, and computes the collision of the voxels with a point cloud representing the environment to identify a suitable path for navigation. We perform adaptive and efficient collision of voxels with the point cloud without the need for mesh generation. We have developed a GPU-accelerated voxel Minkowski sum algorithm to perform a clearance analysis of the vehicle. Finally, we provide theoretical bounds for the accuracy of the collision and clearance analysis. Our GPU implementation is linked with Unreal Engine to provide flexibility in performing the analysis
Beschreibung:Date Revised 05.10.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1558-1756
DOI:10.1109/MCG.2022.3177890