Rapid sequence and functional diversification of a miRNA superfamily targeting calcium signaling components in seed plants
© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
Veröffentlicht in: | The New phytologist. - 1979. - 235(2022), 3 vom: 11. Aug., Seite 1082-1095 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Arabidopsis EF hand (EF-h) autoinhibited Ca2+-ATPase (ACA) calcium signaling calmodulin-like (CML) miR391 posttranscriptional gene silencing (PTGS) spermatophytes mehr... |
Zusammenfassung: | © 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. MicroRNA (miRNA)-directed posttranscriptional gene silencing (miR-PTGS) is an integral component of gene regulatory networks governing plant development and responses to the environment. The sequence homology between Sly-miR4376, a miRNA common to Solanaceae and reported to target autoinhibited Ca2+ -ATPase 10 (ACA10) messenger RNA (mRNA) in tomato, and Arabidopsis miR391 (Ath-miR391), previously annotated as a nonconserved member of the deeply conserved miR390 family, has prompted us to revisit the function of Ath-miR391, as well as its regulatory conservation. A combination of genetic, molecular, and bioinformatic analyses revealed a hidden conservation for miR-PTGS of ACA10 homologs in spermatophytes. We found that the Arabidopsis ACA10 mRNA undergoes miR391-directed cleavage in vivo. Furthermore, transgenic overexpression of miR391 recapitulated the compact inflorescence (cif) phenotypes characteristic of ACA10 loss-of-function mutants, due to miR391-directed PTGS of ACA10. Significantly, comprehensive data mining revealed robust evidence for widespread PTGS of ACA10 homologs directed by a superfamily of related miRNAs sharing a conserved sequence core. Intriguingly, the ACA-targeting miRNAs in Poaceae also direct PTGS for calmodulin-like proteins which are putative Ca2+ sensors. The PTGS of ACA10 homologs is therefore directed by a miRNA superfamily that is of ancient origin and has undergone rapid sequence diversification associated with functional innovation |
---|---|
Beschreibung: | Date Completed 01.07.2022 Date Revised 31.07.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.18185 |