|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM339684305 |
003 |
DE-627 |
005 |
20231226003440.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2022.3168560
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1132.xml
|
035 |
|
|
|a (DE-627)NLM339684305
|
035 |
|
|
|a (NLM)35439129
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wan, Renjie
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Benchmarking Single-Image Reflection Removal Algorithms
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.04.2023
|
500 |
|
|
|a Date Revised 06.04.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Reflection removal has been discussed for more than decades. This paper aims to provide the analysis for different reflection properties and factors that influence image formation, an up-to-date taxonomy for existing methods, a benchmark dataset, and the unified benchmarking evaluations for state-of-the-art (especially learning-based) methods. Specifically, this paper presents a SIngle-image Reflection Removal Plus dataset "SIR 2+ " with the new consideration for in-the-wild scenarios and glass with diverse color and unplanar shapes. We further perform quantitative and visual quality comparisons for state-of-the-art single-image reflection removal algorithms. Open problems for improving reflection removal algorithms are discussed at the end. Our dataset and follow-up update can be found at https://reflectionremoval.github.io/sir2data/
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Shi, Boxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Haoliang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hong, Yuchen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Duan, Ling-Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kot, Alex C
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 45(2023), 2 vom: 19. Feb., Seite 1424-1441
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:45
|g year:2023
|g number:2
|g day:19
|g month:02
|g pages:1424-1441
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2022.3168560
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 45
|j 2023
|e 2
|b 19
|c 02
|h 1424-1441
|