Benchmarking Single-Image Reflection Removal Algorithms

Reflection removal has been discussed for more than decades. This paper aims to provide the analysis for different reflection properties and factors that influence image formation, an up-to-date taxonomy for existing methods, a benchmark dataset, and the unified benchmarking evaluations for state-of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 2 vom: 19. Feb., Seite 1424-1441
1. Verfasser: Wan, Renjie (VerfasserIn)
Weitere Verfasser: Shi, Boxin, Li, Haoliang, Hong, Yuchen, Duan, Ling-Yu, Kot, Alex C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Reflection removal has been discussed for more than decades. This paper aims to provide the analysis for different reflection properties and factors that influence image formation, an up-to-date taxonomy for existing methods, a benchmark dataset, and the unified benchmarking evaluations for state-of-the-art (especially learning-based) methods. Specifically, this paper presents a SIngle-image Reflection Removal Plus dataset "SIR 2+ " with the new consideration for in-the-wild scenarios and glass with diverse color and unplanar shapes. We further perform quantitative and visual quality comparisons for state-of-the-art single-image reflection removal algorithms. Open problems for improving reflection removal algorithms are discussed at the end. Our dataset and follow-up update can be found at https://reflectionremoval.github.io/sir2data/
Beschreibung:Date Completed 06.04.2023
Date Revised 06.04.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2022.3168560