Structural Phase Transitions between Layered Indium Selenide for Integrated Photonic Memory

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 26 vom: 18. Juli, Seite e2108261
1. Verfasser: Li, Tiantian (VerfasserIn)
Weitere Verfasser: Wang, Yong, Li, Wei, Mao, Dun, Benmore, Chris J, Evangelista, Igor, Xing, Huadan, Li, Qiu, Wang, Feifan, Sivaraman, Ganesh, Janotti, Anderson, Law, Stephanie, Gu, Tingyi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article In2Se3 all-optical switching optical memory optical switching structural phase transitions
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
The primary mechanism of optical memoristive devices relies on phase transitions between amorphous and crystalline states. The slow or energy-hungry amorphous-crystalline transitions in optical phase-change materials are detrimental to the scalability and performance of devices. Leveraging an integrated photonic platform, nonvolatile and reversible switching between two layered structures of indium selenide (In2 Se3 ) triggered by a single nanosecond pulse is demonstrated. The high-resolution pair distribution function reveals the detailed atomistic transition pathways between the layered structures. With interlayer "shear glide" and isosymmetric phase transition, switching between the α- and β-structural states contains low re-configurational entropy, allowing reversible switching between layered structures. Broadband refractive index contrast, optical transparency, and volumetric effect in the crystalline-crystalline phase transition are experimentally characterized in molecular-beam-epitaxy-grown thin films and compared to ab initio calculations. The nonlinear resonator transmission spectra measure of incremental linear loss rate of 3.3 GHz, introduced by a 1.5 µm-long In2 Se3 -covered layer, resulted from the combinations of material absorption and scattering
Beschreibung:Date Revised 01.07.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202108261