Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support

The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 8 vom: 08. Aug., Seite 3602-3616
1. Verfasser: Muller-Sielaff, Juliane (VerfasserIn)
Weitere Verfasser: Beladi, Seyed Behnam, Vrede, Stephanie W, Meuschke, Monique, Lucas, Peter J F, Pijnenborg, Johanna M A, Oeltze-Jafra, Steffen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM339245816
003 DE-627
005 20231226002451.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3166071  |2 doi 
028 5 2 |a pubmed24n1130.xml 
035 |a (DE-627)NLM339245816 
035 |a (NLM)35394912 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Muller-Sielaff, Juliane  |e verfasserin  |4 aut 
245 1 0 |a Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.07.2023 
500 |a Date Revised 03.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide facilities for data-driven model generation, domain experts are required to validate the accuracy of the learned model and to provide expert knowledge for fine-tuning it while computer scientists are needed to integrate this knowledge in the learned model (hybrid modeling approach). This generally time-expensive procedure hampers CDSM generation and updating. To address this problem, we developed a novel interactive visual approach allowing medical researchers with less knowledge in CDSM to develop and validate BNs based on domain specific data mainly independently and thus, diminishing the need for an additional computer scientist. In this context, we abstracted and simplified the common workflow in BN development as well as adjusted the workflow to medical experts' needs. We demonstrate our visual approach with data of endometrial cancer patients and evaluated it with six medical researchers who are domain experts in the gynecological field 
650 4 |a Journal Article 
700 1 |a Beladi, Seyed Behnam  |e verfasserin  |4 aut 
700 1 |a Vrede, Stephanie W  |e verfasserin  |4 aut 
700 1 |a Meuschke, Monique  |e verfasserin  |4 aut 
700 1 |a Lucas, Peter J F  |e verfasserin  |4 aut 
700 1 |a Pijnenborg, Johanna M A  |e verfasserin  |4 aut 
700 1 |a Oeltze-Jafra, Steffen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 8 vom: 08. Aug., Seite 3602-3616  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:8  |g day:08  |g month:08  |g pages:3602-3616 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3166071  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 8  |b 08  |c 08  |h 3602-3616