Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support
The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide f...
Veröffentlicht in: | IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 8 vom: 08. Aug., Seite 3602-3616 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on visualization and computer graphics |
Schlagworte: | Journal Article |
Zusammenfassung: | The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide facilities for data-driven model generation, domain experts are required to validate the accuracy of the learned model and to provide expert knowledge for fine-tuning it while computer scientists are needed to integrate this knowledge in the learned model (hybrid modeling approach). This generally time-expensive procedure hampers CDSM generation and updating. To address this problem, we developed a novel interactive visual approach allowing medical researchers with less knowledge in CDSM to develop and validate BNs based on domain specific data mainly independently and thus, diminishing the need for an additional computer scientist. In this context, we abstracted and simplified the common workflow in BN development as well as adjusted the workflow to medical experts' needs. We demonstrate our visual approach with data of endometrial cancer patients and evaluated it with six medical researchers who are domain experts in the gynecological field |
---|---|
Beschreibung: | Date Completed 03.07.2023 Date Revised 03.07.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1941-0506 |
DOI: | 10.1109/TVCG.2022.3166071 |