R-PointHop : A Green, Accurate, and Unsupervised Point Cloud Registration Method

Inspired by the recent PointHop classification method, an unsupervised 3D point cloud registration method, called R-PointHop, is proposed in this work. R-PointHop first determines a local reference frame (LRF) for every point using its nearest neighbors and finds local attributes. Next, R-PointHop o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 24., Seite 2710-2725
1. Verfasser: Kadam, Pranav (VerfasserIn)
Weitere Verfasser: Zhang, Min, Liu, Shan, Kuo, C-C Jay
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM338547509
003 DE-627
005 20231226000922.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3160609  |2 doi 
028 5 2 |a pubmed24n1128.xml 
035 |a (DE-627)NLM338547509 
035 |a (NLM)35324441 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kadam, Pranav  |e verfasserin  |4 aut 
245 1 0 |a R-PointHop  |b A Green, Accurate, and Unsupervised Point Cloud Registration Method 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Inspired by the recent PointHop classification method, an unsupervised 3D point cloud registration method, called R-PointHop, is proposed in this work. R-PointHop first determines a local reference frame (LRF) for every point using its nearest neighbors and finds local attributes. Next, R-PointHop obtains local-to-global hierarchical features by point downsampling, neighborhood expansion, attribute construction and dimensionality reduction steps. Thus, point correspondences are built in hierarchical feature space using the nearest neighbor rule. Afterwards, a subset of salient points with good correspondence is selected to estimate the 3D transformation. The use of the LRF allows for invariance of the hierarchical features of points with respect to rotation and translation, thus making R-PointHop more robust at building point correspondence, even when the rotation angles are large. Experiments are conducted on the 3DMatch, ModelNet40, and Stanford Bunny datasets, which demonstrate the effectiveness of R-PointHop for 3D point cloud registration. R-PointHop's model size and training time are an order of magnitude smaller than those of deep learning methods, and its registration errors are smaller, making it a green and accurate solution. Our codes are available on GitHub (https://github.com/pranavkdm/R-PointHop) 
650 4 |a Journal Article 
700 1 |a Zhang, Min  |e verfasserin  |4 aut 
700 1 |a Liu, Shan  |e verfasserin  |4 aut 
700 1 |a Kuo, C-C Jay  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 24., Seite 2710-2725  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:24  |g pages:2710-2725 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3160609  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 24  |h 2710-2725