Few-Shot Learning With a Strong Teacher

Few-shot learning (FSL) aims to generate a classifier using limited labeled examples. Many existing works take the meta-learning approach, constructing a few-shot learner (a meta-model) that can learn from few-shot examples to generate a classifier. Typically, the few-shot learner is constructed or...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 3 vom: 02. Feb., Seite 1425-1440
1. Verfasser: Ye, Han-Jia (VerfasserIn)
Weitere Verfasser: Ming, Lu, Zhan, De-Chuan, Chao, Wei-Lun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM338290168
003 DE-627
005 20240207231944.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3160362  |2 doi 
028 5 2 |a pubmed24n1283.xml 
035 |a (DE-627)NLM338290168 
035 |a (NLM)35298376 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ye, Han-Jia  |e verfasserin  |4 aut 
245 1 0 |a Few-Shot Learning With a Strong Teacher 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Few-shot learning (FSL) aims to generate a classifier using limited labeled examples. Many existing works take the meta-learning approach, constructing a few-shot learner (a meta-model) that can learn from few-shot examples to generate a classifier. Typically, the few-shot learner is constructed or meta-trained by sampling multiple few-shot tasks in turn and optimizing the few-shot learner's performance in generating classifiers for those tasks. The performance is measured by how well the resulting classifiers classify the test (i.e., query) examples of those tasks. In this paper, we point out two potential weaknesses of this approach. First, the sampled query examples may not provide sufficient supervision for meta-training the few-shot learner. Second, the effectiveness of meta-learning diminishes sharply with the increasing number of shots (i.e., the number of training examples per class). To resolve these issues, we propose a novel meta-training objective for the few-shot learner, which is to encourage the few-shot learner to generate classifiers that perform like strong classifiers. Concretely, we associate each sampled few-shot task with a strong classifier, which is trained with ample labeled examples. The strong classifiers can be seen as the target classifiers that we hope the few-shot learner to generate given few-shot examples, and we use the strong classifiers to supervise the few-shot learner. We present an efficient way to construct the strong classifier, making our proposed objective an easily plug-and-play term to existing meta-learning based FSL methods. We validate our approach, (Learning with A Strong Teacher for few-SHOT learning), in combinations with many representative meta-learning methods. On several benchmark datasets including miniImageNet and tieredImageNet, our approach leads to a notable improvement across a variety of tasks. More importantly, with our approach, meta-learning based FSL methods can consistently outperform non-meta-learning based methods at different numbers of shots, even in many-shot settings, greatly strengthening their applicability 
650 4 |a Journal Article 
700 1 |a Ming, Lu  |e verfasserin  |4 aut 
700 1 |a Zhan, De-Chuan  |e verfasserin  |4 aut 
700 1 |a Chao, Wei-Lun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 3 vom: 02. Feb., Seite 1425-1440  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:3  |g day:02  |g month:02  |g pages:1425-1440 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3160362  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 3  |b 02  |c 02  |h 1425-1440