An Open-Ended Ni3 S2 -Co9 S8 Heterostructures Nanocage Anode with Enhanced Reaction Kinetics for Superior Potassium-Ion Batteries

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 18 vom: 19. Mai, Seite e2201420
1. Verfasser: Zhang, Shipeng (VerfasserIn)
Weitere Verfasser: Ling, Fangxin, Wang, Lifeng, Xu, Rui, Ma, Mingze, Cheng, Xiaolong, Bai, Ruilin, Shao, Yu, Huang, Huijuan, Li, Dongjun, Jiang, Yu, Rui, Xianhong, Bai, Jintao, Yao, Yu, Yu, Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Ni3S2-Co9S8 heterostructures chemical etching nanocage structures potassium-ion batteries
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Sulfides are perceived as promising anode materials for potassium-ion batteries (PIBs) due to their high theoretical specific capacity and structural diversity. Nonetheless, the poor structural stability and sluggish kinetics of sulfides lead to unsatisfactory electrochemical performance. Herein, Ni3 S2 -Co9 S8 heterostructures with an open-ended nanocage structure wrapped by reduced graphene oxide (Ni-Co-SrGO cages) are well designed as the anode for PIBs via a selective etching and one-step sulfuration approach. The hollow Ni-Co-S@rGO nanocages, with large surface area, abundant heterointerfaces, and unique open-ended nanocage structure, can reduce the K+ diffusion length and promote reaction kinetics. When used as the anode for PIBs, the Ni-Co-S@rGO exhibits high reversible capacity and low capacity degradation (0.0089% per cycle over 2000 cycles at 10 A g-1 ). A potassium-ion full battery with a Ni-Co-S@rGO anode and Prussian blue cathode can display a superior reversible capacity of 400 mAh g-1 after 300 cycles at 2 A g-1 . The unique structural advantages and electrochemical reaction mechanisms of the Ni-Co-S@rGO are revealed by finite-element-simulation in situ characterizations. The universal synthesis technology of bimetallic sulfide anodes for advanced PIBs may provide vital guidance to design high-performance energy-storage materials
Beschreibung:Date Revised 06.05.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202201420