|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM337280525 |
003 |
DE-627 |
005 |
20231225234046.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202109126
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1124.xml
|
035 |
|
|
|a (DE-627)NLM337280525
|
035 |
|
|
|a (NLM)35196405
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xia, Neng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Decoupling and Reprogramming the Wiggling Motion of Midge Larvae Using a Soft Robotic Platform
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 28.04.2022
|
500 |
|
|
|a Date Revised 28.04.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a The efficient motility of invertebrates helps them survive under evolutionary pressures. Reconstructing the locomotion of invertebrates and decoupling the influence of individual basic motion are crucial for understanding their underlying mechanisms, which, however, generally remain a challenge due to the complexity of locomotion gaits. Herein, a magnetic soft robot to reproduce midge larva's key natural swimming gaits is developed, and the coupling effect between body curling and rotation on motility is investigated. Through the authors' systematically decoupling studies using programmed magnetic field inputs, the soft robot (named LarvaBot) experiences various coupled gaits, including biomimetic side-to-side flexures, and unveils that the optimal rotation amplitude and the synchronization of curling and rotation greatly enhance its motility. The LarvaBot achieves fast locomotion and upstream capability at the moderate Reynolds number regime. The soft robotics-based platform provides new insight to decouple complex biological locomotion, and design programmed swimming gaits for the fast locomotion of soft-bodied swimmers
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a hydrogel robot
|
650 |
|
4 |
|a magnetic robotic platform
|
650 |
|
4 |
|a motion decoupling
|
650 |
|
4 |
|a wiggling motion
|
700 |
1 |
|
|a Jin, Bowen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Dongdong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Zhengxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pan, Chengfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Qianqian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ji, Fengtong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Iacovacci, Veronica
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Majidi, Carmel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ding, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Li
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 17 vom: 01. Apr., Seite e2109126
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:17
|g day:01
|g month:04
|g pages:e2109126
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202109126
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 17
|b 01
|c 04
|h e2109126
|