Decoupling and Reprogramming the Wiggling Motion of Midge Larvae Using a Soft Robotic Platform

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 17 vom: 01. Apr., Seite e2109126
1. Verfasser: Xia, Neng (VerfasserIn)
Weitere Verfasser: Jin, Bowen, Jin, Dongdong, Yang, Zhengxin, Pan, Chengfeng, Wang, Qianqian, Ji, Fengtong, Iacovacci, Veronica, Majidi, Carmel, Ding, Yang, Zhang, Li
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article hydrogel robot magnetic robotic platform motion decoupling wiggling motion
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
The efficient motility of invertebrates helps them survive under evolutionary pressures. Reconstructing the locomotion of invertebrates and decoupling the influence of individual basic motion are crucial for understanding their underlying mechanisms, which, however, generally remain a challenge due to the complexity of locomotion gaits. Herein, a magnetic soft robot to reproduce midge larva's key natural swimming gaits is developed, and the coupling effect between body curling and rotation on motility is investigated. Through the authors' systematically decoupling studies using programmed magnetic field inputs, the soft robot (named LarvaBot) experiences various coupled gaits, including biomimetic side-to-side flexures, and unveils that the optimal rotation amplitude and the synchronization of curling and rotation greatly enhance its motility. The LarvaBot achieves fast locomotion and upstream capability at the moderate Reynolds number regime. The soft robotics-based platform provides new insight to decouple complex biological locomotion, and design programmed swimming gaits for the fast locomotion of soft-bodied swimmers
Beschreibung:Date Completed 28.04.2022
Date Revised 28.04.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202109126