ScanGAN360 : A Generative Model of Realistic Scanpaths for 360° Images

Understanding and modeling the dynamics of human gaze behavior in 360° environments is crucial for creating, improving, and developing emerging virtual reality applications. However, recruiting human observers and acquiring enough data to analyze their behavior when exploring virtual environments re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 5 vom: 15. Mai, Seite 2003-2013
1. Verfasser: Martin, Daniel (VerfasserIn)
Weitere Verfasser: Serrano, Ana, Bergman, Alexander W, Wetzstein, Gordon, Masia, Belen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM336994699
003 DE-627
005 20231225233416.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3150502  |2 doi 
028 5 2 |a pubmed24n1123.xml 
035 |a (DE-627)NLM336994699 
035 |a (NLM)35167469 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Martin, Daniel  |e verfasserin  |4 aut 
245 1 0 |a ScanGAN360  |b A Generative Model of Realistic Scanpaths for 360° Images 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.04.2022 
500 |a Date Revised 27.06.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Understanding and modeling the dynamics of human gaze behavior in 360° environments is crucial for creating, improving, and developing emerging virtual reality applications. However, recruiting human observers and acquiring enough data to analyze their behavior when exploring virtual environments requires complex hardware and software setups, and can be time-consuming. Being able to generate virtual observers can help overcome this limitation, and thus stands as an open problem in this medium. Particularly, generative adversarial approaches could alleviate this challenge by generating a large number of scanpaths that reproduce human behavior when observing new scenes, essentially mimicking virtual observers. However, existing methods for scanpath generation do not adequately predict realistic scanpaths for 360° images. We present ScanGAN360, a new generative adversarial approach to address this problem. We propose a novel loss function based on dynamic time warping and tailor our network to the specifics of 360° images. The quality of our generated scanpaths outperforms competing approaches by a large margin, and is almost on par with the human baseline. ScanGAN360 allows fast simulation of large numbers of virtual observers, whose behavior mimics real users, enabling a better understanding of gaze behavior, facilitating experimentation, and aiding novel applications in virtual reality and beyond 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Serrano, Ana  |e verfasserin  |4 aut 
700 1 |a Bergman, Alexander W  |e verfasserin  |4 aut 
700 1 |a Wetzstein, Gordon  |e verfasserin  |4 aut 
700 1 |a Masia, Belen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 5 vom: 15. Mai, Seite 2003-2013  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:5  |g day:15  |g month:05  |g pages:2003-2013 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3150502  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 5  |b 15  |c 05  |h 2003-2013