Meta PID Attention Network for Flexible and Efficient Real-World Noisy Image Denoising

Recent deep convolutional neural networks for real-world noisy image denoising have shown a huge boost in performance by training a well-engineered network over external image pairs. However, most of these methods are generally trained with supervision. Once the testing data is no longer compatible...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 15., Seite 2053-2066
1. Verfasser: Ma, Ruijun (VerfasserIn)
Weitere Verfasser: Li, Shuyi, Zhang, Bob, Hu, Haifeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM336994516
003 DE-627
005 20231225233416.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3150294  |2 doi 
028 5 2 |a pubmed24n1123.xml 
035 |a (DE-627)NLM336994516 
035 |a (NLM)35167451 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Ruijun  |e verfasserin  |4 aut 
245 1 0 |a Meta PID Attention Network for Flexible and Efficient Real-World Noisy Image Denoising 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent deep convolutional neural networks for real-world noisy image denoising have shown a huge boost in performance by training a well-engineered network over external image pairs. However, most of these methods are generally trained with supervision. Once the testing data is no longer compatible with the training conditions, they can exhibit poor generalization and easily result in severe overfitting or degrading performances. To tackle this barrier, we propose a novel denoising algorithm, dubbed as Meta PID Attention Network (MPA-Net). Our MPA-Net is built based upon stacking Meta PID Attention Modules (MPAMs). In each MPAM, we utilize a second-order attention module (SAM) to exploit the channel-wise feature correlations with second-order statistics, which are then adaptively updated via a proportional-integral-derivative (PID) guided meta-learning framework. This learning framework exerts the unique property of the PID controller and meta-learning scheme to dynamically generate filter weights for beneficial update of the extracted features within a feedback control system. Moreover, the dynamic nature of the framework enables the generated weights to be flexibly tweaked according to the input at test time. Thus, MPAM not only achieves discriminative feature learning, but also facilitates a robust generalization ability on distinct noises for real images. Extensive experiments on ten datasets are conducted to inspect the effectiveness of the proposed MPA-Net quantitatively and qualitatively, which demonstrates both its superior denoising performance and promising generalization ability that goes beyond those of the state-of-the-art denoising methods 
650 4 |a Journal Article 
700 1 |a Li, Shuyi  |e verfasserin  |4 aut 
700 1 |a Zhang, Bob  |e verfasserin  |4 aut 
700 1 |a Hu, Haifeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 15., Seite 2053-2066  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:15  |g pages:2053-2066 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3150294  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 15  |h 2053-2066