Meta PID Attention Network for Flexible and Efficient Real-World Noisy Image Denoising

Recent deep convolutional neural networks for real-world noisy image denoising have shown a huge boost in performance by training a well-engineered network over external image pairs. However, most of these methods are generally trained with supervision. Once the testing data is no longer compatible...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 15., Seite 2053-2066
Auteur principal: Ma, Ruijun (Auteur)
Autres auteurs: Li, Shuyi, Zhang, Bob, Hu, Haifeng
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
Description
Résumé:Recent deep convolutional neural networks for real-world noisy image denoising have shown a huge boost in performance by training a well-engineered network over external image pairs. However, most of these methods are generally trained with supervision. Once the testing data is no longer compatible with the training conditions, they can exhibit poor generalization and easily result in severe overfitting or degrading performances. To tackle this barrier, we propose a novel denoising algorithm, dubbed as Meta PID Attention Network (MPA-Net). Our MPA-Net is built based upon stacking Meta PID Attention Modules (MPAMs). In each MPAM, we utilize a second-order attention module (SAM) to exploit the channel-wise feature correlations with second-order statistics, which are then adaptively updated via a proportional-integral-derivative (PID) guided meta-learning framework. This learning framework exerts the unique property of the PID controller and meta-learning scheme to dynamically generate filter weights for beneficial update of the extracted features within a feedback control system. Moreover, the dynamic nature of the framework enables the generated weights to be flexibly tweaked according to the input at test time. Thus, MPAM not only achieves discriminative feature learning, but also facilitates a robust generalization ability on distinct noises for real images. Extensive experiments on ten datasets are conducted to inspect the effectiveness of the proposed MPA-Net quantitatively and qualitatively, which demonstrates both its superior denoising performance and promising generalization ability that goes beyond those of the state-of-the-art denoising methods
Description:Date Revised 28.02.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2022.3150294