Volumetric Bioprinting of Organoids and Optically Tuned Hydrogels to Build Liver-Like Metabolic Biofactories

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 15 vom: 01. Apr., Seite e2110054
1. Verfasser: Bernal, Paulina Nuñez (VerfasserIn)
Weitere Verfasser: Bouwmeester, Manon, Madrid-Wolff, Jorge, Falandt, Marc, Florczak, Sammy, Rodriguez, Nuria Ginés, Li, Yang, Größbacher, Gabriel, Samsom, Roos-Anne, van Wolferen, Monique, van der Laan, Luc J W, Delrot, Paul, Loterie, Damien, Malda, Jos, Moser, Christophe, Spee, Bart, Levato, Riccardo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article biofabrication bioresins hydrogels light-based 3D printing volumetric additive manufacturing Hydrogels Gelatin 9000-70-8
Beschreibung
Zusammenfassung:© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Organ- and tissue-level biological functions are intimately linked to microscale cell-cell interactions and to the overarching tissue architecture. Together, biofabrication and organoid technologies offer the unique potential to engineer multi-scale living constructs, with cellular microenvironments formed by stem cell self-assembled structures embedded in customizable bioprinted geometries. This study introduces the volumetric bioprinting of complex organoid-laden constructs, which capture key functions of the human liver. Volumetric bioprinting via optical tomography shapes organoid-laden gelatin hydrogels into complex centimeter-scale 3D structures in under 20 s. Optically tuned bioresins enable refractive index matching of specific intracellular structures, countering the disruptive impact of cell-mediated light scattering on printing resolution. This layerless, nozzle-free technique poses no harmful mechanical stresses on organoids, resulting in superior viability and morphology preservation post-printing. Bioprinted organoids undergo hepatocytic differentiation showing albumin synthesis, liver-specific enzyme activity, and remarkably acquired native-like polarization. Organoids embedded within low stiffness gelatins (<2 kPa) are bioprinted into mathematically defined lattices with varying degrees of pore network tortuosity, and cultured under perfusion. These structures act as metabolic biofactories in which liver-specific ammonia detoxification can be enhanced by the architectural profile of the constructs. This technology opens up new possibilities for regenerative medicine and personalized drug testing
Beschreibung:Date Completed 15.04.2022
Date Revised 15.04.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202110054