ROAD : The Road Event Awareness Dataset for Autonomous Driving

Humans drive in a holistic fashion which entails, in particular, understanding dynamic road events and their evolution. Injecting these capabilities in autonomous vehicles can thus take situational awareness and decision making closer to human-level performance. To this purpose, we introduce the ROa...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 01. Jan., Seite 1036-1054
Auteur principal: Singh, Gurkirt (Auteur)
Autres auteurs: Akrigg, Stephen, Maio, Manuele Di, Fontana, Valentina, Alitappeh, Reza Javanmard, Khan, Salman, Saha, Suman, Jeddisaravi, Kossar, Yousefi, Farzad, Culley, Jacob, Nicholson, Tom, Omokeowa, Jordan, Grazioso, Stanislao, Bradley, Andrew, Gironimo, Giuseppe Di, Cuzzolin, Fabio
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM336896816
003 DE-627
005 20250303005425.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3150906  |2 doi 
028 5 2 |a pubmed25n1122.xml 
035 |a (DE-627)NLM336896816 
035 |a (NLM)35157577 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Singh, Gurkirt  |e verfasserin  |4 aut 
245 1 0 |a ROAD  |b The Road Event Awareness Dataset for Autonomous Driving 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Humans drive in a holistic fashion which entails, in particular, understanding dynamic road events and their evolution. Injecting these capabilities in autonomous vehicles can thus take situational awareness and decision making closer to human-level performance. To this purpose, we introduce the ROad event Awareness Dataset (ROAD) for Autonomous Driving, to our knowledge the first of its kind. ROAD is designed to test an autonomous vehicle's ability to detect road events, defined as triplets composed by an active agent, the action(s) it performs and the corresponding scene locations. ROAD comprises videos originally from the Oxford RobotCar Dataset, annotated with bounding boxes showing the location in the image plane of each road event. We benchmark various detection tasks, proposing as a baseline a new incremental algorithm for online road event awareness termed 3D-RetinaNet. We also report the performance on the ROAD tasks of Slowfast and YOLOv5 detectors, as well as that of the winners of the ICCV2021 ROAD challenge, which highlight the challenges faced by situation awareness in autonomous driving. ROAD is designed to allow scholars to investigate exciting tasks such as complex (road) activity detection, future event anticipation and continual learning. The dataset is available at https://github.com/gurkirt/road-dataset; the baseline can be found at https://github.com/gurkirt/3D-RetinaNet 
650 4 |a Journal Article 
700 1 |a Akrigg, Stephen  |e verfasserin  |4 aut 
700 1 |a Maio, Manuele Di  |e verfasserin  |4 aut 
700 1 |a Fontana, Valentina  |e verfasserin  |4 aut 
700 1 |a Alitappeh, Reza Javanmard  |e verfasserin  |4 aut 
700 1 |a Khan, Salman  |e verfasserin  |4 aut 
700 1 |a Saha, Suman  |e verfasserin  |4 aut 
700 1 |a Jeddisaravi, Kossar  |e verfasserin  |4 aut 
700 1 |a Yousefi, Farzad  |e verfasserin  |4 aut 
700 1 |a Culley, Jacob  |e verfasserin  |4 aut 
700 1 |a Nicholson, Tom  |e verfasserin  |4 aut 
700 1 |a Omokeowa, Jordan  |e verfasserin  |4 aut 
700 1 |a Grazioso, Stanislao  |e verfasserin  |4 aut 
700 1 |a Bradley, Andrew  |e verfasserin  |4 aut 
700 1 |a Gironimo, Giuseppe Di  |e verfasserin  |4 aut 
700 1 |a Cuzzolin, Fabio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 1 vom: 01. Jan., Seite 1036-1054  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:1  |g day:01  |g month:01  |g pages:1036-1054 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3150906  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 1  |b 01  |c 01  |h 1036-1054