LASOR : Learning Accurate 3D Human Pose and Shape via Synthetic Occlusion-Aware Data and Neural Mesh Rendering

A key challenge in the task of human pose and shape estimation is occlusion, including self-occlusions, object-human occlusions, and inter-person occlusions. The lack of diverse and accurate pose and shape training data becomes a major bottleneck, especially for scenes with occlusions in the wild. I...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 10., Seite 1938-1948
1. Verfasser: Yang, Kaibing (VerfasserIn)
Weitere Verfasser: Gu, Renshu, Wang, Maoyu, Toyoura, Masahiro, Xu, Gang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM336756097
003 DE-627
005 20231225232850.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3149229  |2 doi 
028 5 2 |a pubmed24n1122.xml 
035 |a (DE-627)NLM336756097 
035 |a (NLM)35143398 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Kaibing  |e verfasserin  |4 aut 
245 1 0 |a LASOR  |b Learning Accurate 3D Human Pose and Shape via Synthetic Occlusion-Aware Data and Neural Mesh Rendering 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.02.2022 
500 |a Date Revised 18.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a A key challenge in the task of human pose and shape estimation is occlusion, including self-occlusions, object-human occlusions, and inter-person occlusions. The lack of diverse and accurate pose and shape training data becomes a major bottleneck, especially for scenes with occlusions in the wild. In this paper, we focus on the estimation of human pose and shape in the case of inter-person occlusions, while also handling object-human occlusions and self-occlusion. We propose a novel framework that synthesizes occlusion-aware silhouette and 2D keypoints data and directly regress to the SMPL pose and shape parameters. A neural 3D mesh renderer is exploited to enable silhouette supervision on the fly, which contributes to great improvements in shape estimation. In addition, keypoints-and-silhouette-driven training data in panoramic viewpoints are synthesized to compensate for the lack of viewpoint diversity in any existing dataset. Experimental results show that we are among the state-of-the-art on the 3DPW and 3DPW-Crowd datasets in terms of pose estimation accuracy. The proposed method evidently outperforms Mesh Transformer, 3DCrowdNet and ROMP in terms of shape estimation. Top performance is also achieved on SSP-3D in terms of shape prediction accuracy. Demo and code will be available at https://igame-lab.github.io/LASOR/ 
650 4 |a Journal Article 
700 1 |a Gu, Renshu  |e verfasserin  |4 aut 
700 1 |a Wang, Maoyu  |e verfasserin  |4 aut 
700 1 |a Toyoura, Masahiro  |e verfasserin  |4 aut 
700 1 |a Xu, Gang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 10., Seite 1938-1948  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:10  |g pages:1938-1948 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3149229  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 10  |h 1938-1948