LASOR : Learning Accurate 3D Human Pose and Shape via Synthetic Occlusion-Aware Data and Neural Mesh Rendering
A key challenge in the task of human pose and shape estimation is occlusion, including self-occlusions, object-human occlusions, and inter-person occlusions. The lack of diverse and accurate pose and shape training data becomes a major bottleneck, especially for scenes with occlusions in the wild. I...
| Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 10., Seite 1938-1948 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2022
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
| Schlagworte: | Journal Article |
| Online verfügbar |
Volltext |