Stepwise Energy Transfer : Near-Infrared Persistent Luminescence from Doped Polymeric Systems
© 2022 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 15 vom: 31. Apr., Seite e2108333 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Förster resonance energy transfer near infrared organic polymers persistent luminescence room-temperature phosphorescence Coloring Agents Polymers |
Zusammenfassung: | © 2022 Wiley-VCH GmbH. Organic near infrared (NIR) persistent-luminescence systems with bright and long-lived emission are highly valuable for applications in communication, imaging, and sensors. However, realizing these materials (especially lifetime over 0.1 s) is a challenge, mainly because of non-radiative quenching of their long-lived excitons. Herein, a universal strategy of stepwise Förster resonance energy transfer (FRET) for a bright NIR system with remarkable persistent luminescence (up to 0.2 s at 810 nm) is presented, based on a new triphenylene-dye-doped polymer (triphenylene-2-ylboronic acidpoly(vinyl alcohol) (TP@PVA)) with a persistent blue phosphorescence of 3.29 s. This persistent NIR luminescence is demonstrated for application not only in NIR anti-counterfeiting but also NIR bioimaging with penetrating a piece of skin as thick as 2.0 mm. By co-doping a red dye (such as Nile red) and an NIR dye Cyanine 7 (Cy7) into this doped PVA film, the shortage of spectral overlap between TP emission and Cy7 absorbance is successfully solved, through a stepwise FRET process involving triplet to singlet (TS)-FRET from TP to the intermediate red dye and then singlet to singlet (SS)-FRET to Cy7. It is noted that the efficiency of the upper TS-FRET is enhanced significantly by the lower SS-FRET, leading to high efficiencies for the continuous FRETs |
---|---|
Beschreibung: | Date Completed 15.04.2022 Date Revised 15.04.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202108333 |