Semi-Supervised Heterogeneous Domain Adaptation : Theory and Algorithms

Semi-supervised heterogeneous domain adaptation (SsHeDA) aims to train a classifier for the target domain, in which only unlabeled and a small number of labeled data are available. This is done by leveraging knowledge acquired from a heterogeneous source domain. From algorithmic perspectives, severa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 27. Jan., Seite 1087-1105
1. Verfasser: Fang, Zhen (VerfasserIn)
Weitere Verfasser: Lu, Jie, Liu, Feng, Zhang, Guangquan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM33619451X
003 DE-627
005 20231225231602.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3146234  |2 doi 
028 5 2 |a pubmed24n1120.xml 
035 |a (DE-627)NLM33619451X 
035 |a (NLM)35085072 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fang, Zhen  |e verfasserin  |4 aut 
245 1 0 |a Semi-Supervised Heterogeneous Domain Adaptation  |b Theory and Algorithms 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Semi-supervised heterogeneous domain adaptation (SsHeDA) aims to train a classifier for the target domain, in which only unlabeled and a small number of labeled data are available. This is done by leveraging knowledge acquired from a heterogeneous source domain. From algorithmic perspectives, several methods have been proposed to solve the SsHeDA problem; yet there is still no theoretical foundation to explain the nature of the SsHeDA problem or to guide new and better solutions. Motivated by compatibility condition in semi-supervised probably approximately correct (PAC) theory, we explain the SsHeDA problem by proving its generalization error - that is, why labeled heterogeneous source data and unlabeled target data help to reduce the target risk. Guided by our theory, we devise two algorithms as proof of concept. One, kernel heterogeneous domain alignment (KHDA), is a kernel-based algorithm; the other, joint mean embedding alignment (JMEA), is a neural network-based algorithm. When a dataset is small, KHDA's training time is less than JMEA's. When a dataset is large, JMEA is more accurate in the target domain. Comprehensive experiments with image/text classification tasks show KHDA to be the most accurate among all non-neural network baselines, and JMEA to be the most accurate among all baselines 
650 4 |a Journal Article 
700 1 |a Lu, Jie  |e verfasserin  |4 aut 
700 1 |a Liu, Feng  |e verfasserin  |4 aut 
700 1 |a Zhang, Guangquan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 1 vom: 27. Jan., Seite 1087-1105  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:1  |g day:27  |g month:01  |g pages:1087-1105 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3146234  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 1  |b 27  |c 01  |h 1087-1105