Semi-Supervised Heterogeneous Domain Adaptation : Theory and Algorithms
Semi-supervised heterogeneous domain adaptation (SsHeDA) aims to train a classifier for the target domain, in which only unlabeled and a small number of labeled data are available. This is done by leveraging knowledge acquired from a heterogeneous source domain. From algorithmic perspectives, severa...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 27. Jan., Seite 1087-1105 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |