Coffee Grounds-Doped Alginate Porous Materials for Efficient Solar Steam Generation
Solar steam generation (SSG) devices have emerged as one of the promising technologies for seawater desalination to meet the worldwide demand for clean water. Herein, we fabricated a new monolithic SSG system derived from waste coffee grounds (CG) through a simple carbonization followed by a freeze-...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 5 vom: 08. Feb., Seite 1888-1896 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Solar steam generation (SSG) devices have emerged as one of the promising technologies for seawater desalination to meet the worldwide demand for clean water. Herein, we fabricated a new monolithic SSG system derived from waste coffee grounds (CG) through a simple carbonization followed by a freeze-drying process (named as CCGA). The as-prepared CCGA possesses a porous structure with superhydrophilic, abundant porosity (81.7%); low thermal conductivity (0.129 W m-1 K-1) in a wet state; low apparent density (25 mg cm-3); and broad sunlight absorption in a wet state (ca. 93%). The combination of its carbon nature and abundant porous structure endowed barrier-free water transmission channels, a self-floating property, and a superb photothermal conversion performance to the SSG. The temperature of the CCGA's upper surface can reach up to 42.6 °C under 1 sun irradiation, and for pure water, the evaporation rate of CCGA can be up to 1.486 kg m-2 h-1, corresponding to a good photothermal conversion efficiency of 86.96%. It also exhibits an excellent desalination capability; e.g., the photothermal conversion efficiency of CCGA in NaCl (20 wt %) brine is measured to be 75.77% under 1 sun irradiation, and the fresh water obtained from artificial seawater can achieve the WHO's standard for domestic water. With the advantages of low cost and a simple preparation process, such biomass-based CCGA materials may have great potential as an efficient SSG device for seawater desalination |
---|---|
Beschreibung: | Date Revised 08.02.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.1c03102 |