Enabling Fast Na+ Transfer Kinetics in the Whole-Voltage-Region of Hard-Carbon Anodes for Ultrahigh-Rate Sodium Storage

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 13 vom: 28. Apr., Seite e2109282
1. Verfasser: Yin, Xiuping (VerfasserIn)
Weitere Verfasser: Lu, Zhixiu, Wang, Jing, Feng, Xiaochen, Roy, Swagata, Liu, Xiangsi, Yang, Yong, Zhao, Yufeng, Zhang, Jiujun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article anodes hard carbon sodium storage sodium-ion batteries whole-voltage-region
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Efficient electrode materials, that combine high power and high energy, are the crucial requisites of sodium-ion batteries (SIBs), which have unwrapped new possibilities in the areas of grid-scale energy storage. Hard carbons (HCs) are considered as the leading candidate anode materials for SIBs, however, the primary challenge of slow charge-transfer kinetics at the low potential region (<0.1 V) remains unresolved till date, and the underlying structure-performance correlation is under debate. Herein, ultrafast sodium storage in the whole-voltage-region (0.01-2 V), with the Na+ diffusion coefficient enhanced by 2 orders of magnitude (≈10-7 cm2 s-1 ) through rationally deploying the physical parameters of HCs using a ZnO-assisted bulk etching strategy is reported. It is unveiled that the Na+ adsorption energy (Ea ) and diffusion barrier (Eb ) are in a positive and negative linear relationship with the carbon p-band center, respectively, and balance of Ea and Eb is critical in enhancing the charge-storage kinetics. The charge-storage mechanism in HCs is evidenced through comprehensive in(ex) situ techniques. The as prepared HCs microspheres deliver a record high rate performance of 107 mAh g-1 50 A g-1 and unprecedented electrochemical performance at extremely low temperature (426 mAh g-1 @ -40 °C)
Beschreibung:Date Revised 01.04.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202109282