Amino Acid-Mediated Synthesis of the ZIF-8 Nanozyme That Reproduces Both the Zinc-Coordinated Active Center and Hydrophobic Pocket of Natural Carbonic Anhydrase

The zeolitic imidazolate framework-8 (ZIF-8) nanozyme has been synthesized using hydrophobic amino acid (AA) to regulate crystal growth. The as-synthesized ZIF-8 reproduces both the structural and functional properties of natural carbonic anhydrase (CA). Structurally, Zn2+/2-methylimidazole coordina...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 38(2022), 4 vom: 01. Feb., Seite 1621-1630
1. Verfasser: Sun, Shixuan (VerfasserIn)
Weitere Verfasser: Zhang, Zijin, Xiang, Yong, Cao, Meiwen, Yu, Daoyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Amino Acids Zeolites 1318-02-1 Carbon Dioxide 142M471B3J Carbonic Anhydrases EC 4.2.1.1 Zinc J41CSQ7QDS
Beschreibung
Zusammenfassung:The zeolitic imidazolate framework-8 (ZIF-8) nanozyme has been synthesized using hydrophobic amino acid (AA) to regulate crystal growth. The as-synthesized ZIF-8 reproduces both the structural and functional properties of natural carbonic anhydrase (CA). Structurally, Zn2+/2-methylimidazole coordinated units mimic very well the active center of CA while the hydrophobic microdomains of the adsorbed AA simulate the CA hydrophobic pocket. Functionally, the nanozymes show excellent CA-like esterase activity by giving specific enzyme activity of 0.22 U mg-1 at 25 °C in the case of Val-ZIF-8. More strikingly, such nanozymes are superior to natural CA by having excellent hydrothermal stability, which can give highly enhanced esterase activity with increasing temperature. The specific enzyme activity of Val-ZIF-8 at 80 °C is about 25 times higher than that at 25 °C. In addition, AA-ZIF-8 also shows an excellent catalytic efficiency toward carbon dioxide (CO2) hydration. This study puts forward the important role of hydrophobic microdomains in biomimetic nanozymes for the first time and develops a facile and mild method for the synthesis of nanozymes with controlled morphology and size to achieve excellent catalytic efficiency
Beschreibung:Date Completed 08.03.2022
Date Revised 08.03.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c03118