Amino Acid-Mediated Synthesis of the ZIF-8 Nanozyme That Reproduces Both the Zinc-Coordinated Active Center and Hydrophobic Pocket of Natural Carbonic Anhydrase
The zeolitic imidazolate framework-8 (ZIF-8) nanozyme has been synthesized using hydrophobic amino acid (AA) to regulate crystal growth. The as-synthesized ZIF-8 reproduces both the structural and functional properties of natural carbonic anhydrase (CA). Structurally, Zn2+/2-methylimidazole coordina...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 38(2022), 4 vom: 01. Feb., Seite 1621-1630 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Amino Acids Zeolites 1318-02-1 Carbon Dioxide 142M471B3J Carbonic Anhydrases EC 4.2.1.1 Zinc |
Zusammenfassung: | The zeolitic imidazolate framework-8 (ZIF-8) nanozyme has been synthesized using hydrophobic amino acid (AA) to regulate crystal growth. The as-synthesized ZIF-8 reproduces both the structural and functional properties of natural carbonic anhydrase (CA). Structurally, Zn2+/2-methylimidazole coordinated units mimic very well the active center of CA while the hydrophobic microdomains of the adsorbed AA simulate the CA hydrophobic pocket. Functionally, the nanozymes show excellent CA-like esterase activity by giving specific enzyme activity of 0.22 U mg-1 at 25 °C in the case of Val-ZIF-8. More strikingly, such nanozymes are superior to natural CA by having excellent hydrothermal stability, which can give highly enhanced esterase activity with increasing temperature. The specific enzyme activity of Val-ZIF-8 at 80 °C is about 25 times higher than that at 25 °C. In addition, AA-ZIF-8 also shows an excellent catalytic efficiency toward carbon dioxide (CO2) hydration. This study puts forward the important role of hydrophobic microdomains in biomimetic nanozymes for the first time and develops a facile and mild method for the synthesis of nanozymes with controlled morphology and size to achieve excellent catalytic efficiency |
---|---|
Beschreibung: | Date Completed 08.03.2022 Date Revised 08.03.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.1c03118 |