|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM335074480 |
003 |
DE-627 |
005 |
20231225225033.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.plaphy.2021.12.022
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1116.xml
|
035 |
|
|
|a (DE-627)NLM335074480
|
035 |
|
|
|a (NLM)34971954
|
035 |
|
|
|a (PII)S0981-9428(21)00636-7
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Vall-Llaura, Núria
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a ROS-scavenging-associated transcriptional and biochemical shifts during nectarine fruit development and ripening
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 21.01.2022
|
500 |
|
|
|a Date Revised 21.01.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2021 Elsevier Masson SAS. All rights reserved.
|
520 |
|
|
|a ROS are known as toxic by-products but also as important signaling molecules playing a key role in fruit development and ripening. To counteract the negative effects of ROS, plants and fruit own multiple ROS-scavenging mechanisms aiming to ensure a balanced ROS homeostasis. In the present study, changes in specific ROS (i.e. H2O2) as well as enzymatic (SOD, CAT, POX, APX) and non-enzymatic (phenylpropanoids, carotenoids and ascorbate) ROS-scavenging systems were investigated along four different stages of nectarine (cv. 'Diamond Ray') fruit development and ripening (39, 70, 94 and 121 DAFB) both at the metabolic (28 individual metabolites or enzymes) and transcriptional level (24 genes). Overall, our results demonstrate a complex ROS-related transcriptome and metabolome reprogramming during fruit development and ripening. At earlier fruit developmental stages an increase on the respiration rate is likely triggering an oxidative burst and resulting in the activation of specific ethylene response factors (ERF1). In turn, ROS-responsive genes or the biosynthesis of specific antioxidant compounds (i.e. phenylpropanoids) were highly expressed or accumulated at earlier fruit developmental stages (39-70 DAFB). Nonetheless, as the fruit develops, the decrease in the fruit respiration rate and the reduction of ERF1 genes leads to lower levels of most non-enzymatic antioxidants and higher accumulation of H2O2. Based on available literature and the observed accumulation dynamics of H2O2, it is anticipated that this compound may not only be a by-product of ROS-scavenging but also a signaling molecule accumulated during the ripening of nectarine fruit
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Antioxidant enzymes
|
650 |
|
4 |
|a Carotenoids
|
650 |
|
4 |
|a ERF
|
650 |
|
4 |
|a Ethylene
|
650 |
|
4 |
|a Phenolic compounds
|
650 |
|
4 |
|a Respiration
|
650 |
|
7 |
|a Ethylenes
|2 NLM
|
650 |
|
7 |
|a Plant Proteins
|2 NLM
|
650 |
|
7 |
|a Reactive Oxygen Species
|2 NLM
|
650 |
|
7 |
|a Carotenoids
|2 NLM
|
650 |
|
7 |
|a 36-88-4
|2 NLM
|
650 |
|
7 |
|a Hydrogen Peroxide
|2 NLM
|
650 |
|
7 |
|a BBX060AN9V
|2 NLM
|
700 |
1 |
|
|a Fernández-Cancelo, Pablo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nativitas-Lima, Isabel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Echeverria, Gemma
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Teixidó, Neus
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Larrigaudière, Christian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Torres, Rosario
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Giné-Bordonaba, Jordi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Plant physiology and biochemistry : PPB
|d 1991
|g 171(2022) vom: 15. Jan., Seite 38-48
|w (DE-627)NLM098178261
|x 1873-2690
|7 nnns
|
773 |
1 |
8 |
|g volume:171
|g year:2022
|g day:15
|g month:01
|g pages:38-48
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.plaphy.2021.12.022
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 171
|j 2022
|b 15
|c 01
|h 38-48
|