|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM334712386 |
003 |
DE-627 |
005 |
20231225224308.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.16054
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1115.xml
|
035 |
|
|
|a (DE-627)NLM334712386
|
035 |
|
|
|a (NLM)34935251
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Xiao-Yan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Significant winter CO2 uptake by saline lakes on the Qinghai-Tibet Plateau
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.02.2022
|
500 |
|
|
|a Date Revised 24.02.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2022 John Wiley & Sons Ltd.
|
520 |
|
|
|a Direct measuring of CO2 flux remains challenging for global lakes. The traditional sampling and gas transfer models used to estimate lake CO2 fluxes are variable and uncertain, and ice-covered periods are often excluded from the annual carbon budget. Here, the first longtime (2013-2017) direct measurement of CO2 flux by eddy covariance system over the largest saline lake (Qinghai lake) in the Qinghai-Tibet Plateau (QTP) revealed that ice-covered period draws large amounts of CO2 from the atmosphere (-0.87 ± 0.38 g C m-2 d-1 ), a value more than twice the CO2 flux rate during the ice-free period (-0.41 ± 0.35 g C m-2 d-1 ). The total CO2 uptake by all saline lakes on the QTP was estimated to -10.28 ± 1.65 Tg C yr-1 , an equivalent to approximately one third of the net terrestrial ecosystems carbon sink in QTP. Our results indicate large sink for CO2 in winter is controlled by both seasonal hydrochemistry processes and lake ice absorption in saline lakes. This research also demonstrates decreasing CO2 uptake from the atmosphere by saline lakes on the QTP, which may turn carbon sinks to carbon sources with future warming
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a CO2 update
|
650 |
|
4 |
|a Qinghai-Tibet Plateau
|
650 |
|
4 |
|a ice-covered period
|
650 |
|
4 |
|a saline lakes
|
650 |
|
4 |
|a winter
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
700 |
1 |
|
|a Shi, Fang-Zhong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Yu-Jun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Shao-Jie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, Jun-Qi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 28(2022), 6 vom: 07. März, Seite 2041-2052
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:28
|g year:2022
|g number:6
|g day:07
|g month:03
|g pages:2041-2052
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.16054
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 28
|j 2022
|e 6
|b 07
|c 03
|h 2041-2052
|