Multi-Attribute Discriminative Representation Learning for Prediction of Adverse Drug-Drug Interaction

Adverse drug-drug interaction (ADDI) is a significant life-threatening issue, posing a leading cause of hospitalizations and deaths in healthcare systems. This paper proposes a unified Multi-Attribute Discriminative Representation Learning (MADRL) model for ADDI prediction. Unlike the existing works...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 16. Dez., Seite 10129-10144
1. Verfasser: Zhu, Jiajing (VerfasserIn)
Weitere Verfasser: Liu, Yongguo, Zhang, Yun, Chen, Zhi, Wu, Xindong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM334507960
003 DE-627
005 20231225223834.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3135841  |2 doi 
028 5 2 |a pubmed24n1114.xml 
035 |a (DE-627)NLM334507960 
035 |a (NLM)34914581 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Jiajing  |e verfasserin  |4 aut 
245 1 0 |a Multi-Attribute Discriminative Representation Learning for Prediction of Adverse Drug-Drug Interaction 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.11.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Adverse drug-drug interaction (ADDI) is a significant life-threatening issue, posing a leading cause of hospitalizations and deaths in healthcare systems. This paper proposes a unified Multi-Attribute Discriminative Representation Learning (MADRL) model for ADDI prediction. Unlike the existing works that equally treat features of each attribute without discrimination and do not consider the underlying relationship among drugs, we first develop a regularized optimization problem based on CUR matrix decomposition for joint representative drug and discriminative feature selection such that the selected drugs and features can well approximate the original feature spaces and the critical factors discriminative to ADDIs can be properly explored. Different from the existing models that ignore the consistent and unique properties among attributes, a Generative Adversarial Network (GAN) framework is then designed to capture the inter-attribute shared and intra-attribute specific representations of adverse drug pairs for exploiting their consensus and complementary information in ADDI prediction. Meanwhile, MADRL is compatible with any kind of attributes and capable of exploring their respective effects on ADDI prediction. An iterative algorithm based on the alternating direction method of multipliers is developed for optimization. Experiments on publicly available dataset demonstrate the effectiveness of MADRL when compared with eleven baselines and its six variants 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Yongguo  |e verfasserin  |4 aut 
700 1 |a Zhang, Yun  |e verfasserin  |4 aut 
700 1 |a Chen, Zhi  |e verfasserin  |4 aut 
700 1 |a Wu, Xindong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 16. Dez., Seite 10129-10144  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:16  |g month:12  |g pages:10129-10144 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3135841  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 16  |c 12  |h 10129-10144