Multi-Attribute Discriminative Representation Learning for Prediction of Adverse Drug-Drug Interaction

Adverse drug-drug interaction (ADDI) is a significant life-threatening issue, posing a leading cause of hospitalizations and deaths in healthcare systems. This paper proposes a unified Multi-Attribute Discriminative Representation Learning (MADRL) model for ADDI prediction. Unlike the existing works...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 16. Dez., Seite 10129-10144
1. Verfasser: Zhu, Jiajing (VerfasserIn)
Weitere Verfasser: Liu, Yongguo, Zhang, Yun, Chen, Zhi, Wu, Xindong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Adverse drug-drug interaction (ADDI) is a significant life-threatening issue, posing a leading cause of hospitalizations and deaths in healthcare systems. This paper proposes a unified Multi-Attribute Discriminative Representation Learning (MADRL) model for ADDI prediction. Unlike the existing works that equally treat features of each attribute without discrimination and do not consider the underlying relationship among drugs, we first develop a regularized optimization problem based on CUR matrix decomposition for joint representative drug and discriminative feature selection such that the selected drugs and features can well approximate the original feature spaces and the critical factors discriminative to ADDIs can be properly explored. Different from the existing models that ignore the consistent and unique properties among attributes, a Generative Adversarial Network (GAN) framework is then designed to capture the inter-attribute shared and intra-attribute specific representations of adverse drug pairs for exploiting their consensus and complementary information in ADDI prediction. Meanwhile, MADRL is compatible with any kind of attributes and capable of exploring their respective effects on ADDI prediction. An iterative algorithm based on the alternating direction method of multipliers is developed for optimization. Experiments on publicly available dataset demonstrate the effectiveness of MADRL when compared with eleven baselines and its six variants
Beschreibung:Date Completed 09.11.2022
Date Revised 19.11.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2021.3135841