Biohybrid Variable-Stiffness Soft Actuators that Self-Create Bone

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 8 vom: 28. Feb., Seite e2107345
1. Verfasser: Cao, Danfeng (VerfasserIn)
Weitere Verfasser: Martinez, Jose G, Hara, Emilio Satoshi, Jager, Edwin W H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article actuators biohybrids mineralization variable stiffness Polymers Pyrroles
LEADER 01000caa a22002652c 4500
001 NLM334143535
003 DE-627
005 20250302183604.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202107345  |2 doi 
028 5 2 |a pubmed25n1113.xml 
035 |a (DE-627)NLM334143535 
035 |a (NLM)34877728 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cao, Danfeng  |e verfasserin  |4 aut 
245 1 0 |a Biohybrid Variable-Stiffness Soft Actuators that Self-Create Bone 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.03.2022 
500 |a Date Revised 01.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Inspired by the dynamic process of initial bone development, in which a soft tissue turns into a solid load-bearing structure, the fabrication, optimization, and characterization of bioinduced variable-stiffness actuators that can morph in various shapes and change their properties from soft to rigid are hereby presented. Bilayer devices are prepared by combining the electromechanically active properties of polypyrrole with the compliant behavior of alginate gels that are uniquely functionalized with cell-derived plasma membrane nanofragments (PMNFs), previously shown to mineralize within 2 days, which promotes the mineralization in the gel layer to achieve the soft to stiff change by growing their own bone. The mineralized actuator shows an evident frozen state compared to the movement before mineralization. Next, patterned devices show programmed directional and fixated morphing. These variable-stiffness devices can wrap around and, after the PMNF-induced mineralization in and on the gel layer, adhere and integrate onto bone tissue. The developed biohybrid variable-stiffness actuators can be used in soft (micro-)robotics and as potential tools for bone repair or bone tissue engineering 
650 4 |a Journal Article 
650 4 |a actuators 
650 4 |a biohybrids 
650 4 |a mineralization 
650 4 |a variable stiffness 
650 7 |a Polymers  |2 NLM 
650 7 |a Pyrroles  |2 NLM 
700 1 |a Martinez, Jose G  |e verfasserin  |4 aut 
700 1 |a Hara, Emilio Satoshi  |e verfasserin  |4 aut 
700 1 |a Jager, Edwin W H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 8 vom: 28. Feb., Seite e2107345  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:34  |g year:2022  |g number:8  |g day:28  |g month:02  |g pages:e2107345 
856 4 0 |u http://dx.doi.org/10.1002/adma.202107345  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 8  |b 28  |c 02  |h e2107345