Two-Branch Deconvolutional Network With Application in Stereo Matching

Deconvolutional networks have attracted extensive attention and have been successfully applied in the field of computer vision. In this paper we propose a novel two-branch deconvolutional network (TBDN) that can improve the performance of conventional deconvolutional networks and reduce the computat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 06., Seite 327-340
1. Verfasser: Cheng, Chunbo (VerfasserIn)
Weitere Verfasser: Li, Hong, Zhang, Liming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM334078776
003 DE-627
005 20231225222947.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3131048  |2 doi 
028 5 2 |a pubmed24n1113.xml 
035 |a (DE-627)NLM334078776 
035 |a (NLM)34871173 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Chunbo  |e verfasserin  |4 aut 
245 1 0 |a Two-Branch Deconvolutional Network With Application in Stereo Matching 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deconvolutional networks have attracted extensive attention and have been successfully applied in the field of computer vision. In this paper we propose a novel two-branch deconvolutional network (TBDN) that can improve the performance of conventional deconvolutional networks and reduce the computational complexity. A feasible iterative algorithm is designed to solve the optimization problem for the TBDN model, and a theoretical analysis of the convergence and computational complexity for the algorithm is also provided. The application of the TBDN in stereo matching is presented by constructing a disparity estimation network. Extensive experimental results on four commonly used datasets demonstrate the efficiency and effectiveness of the proposed TBDN 
650 4 |a Journal Article 
700 1 |a Li, Hong  |e verfasserin  |4 aut 
700 1 |a Zhang, Liming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 06., Seite 327-340  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:06  |g pages:327-340 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3131048  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 06  |h 327-340