Two-Branch Deconvolutional Network With Application in Stereo Matching
Deconvolutional networks have attracted extensive attention and have been successfully applied in the field of computer vision. In this paper we propose a novel two-branch deconvolutional network (TBDN) that can improve the performance of conventional deconvolutional networks and reduce the computat...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 06., Seite 327-340 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Deconvolutional networks have attracted extensive attention and have been successfully applied in the field of computer vision. In this paper we propose a novel two-branch deconvolutional network (TBDN) that can improve the performance of conventional deconvolutional networks and reduce the computational complexity. A feasible iterative algorithm is designed to solve the optimization problem for the TBDN model, and a theoretical analysis of the convergence and computational complexity for the algorithm is also provided. The application of the TBDN in stereo matching is presented by constructing a disparity estimation network. Extensive experimental results on four commonly used datasets demonstrate the efficiency and effectiveness of the proposed TBDN |
---|---|
Beschreibung: | Date Revised 10.12.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2021.3131048 |