Bridging the Gap Between Few-Shot and Many-Shot Learning via Distribution Calibration

A major gap between few-shot and many-shot learning is the data distribution empirically oserved by the model during training. In few-shot learning, the learned model can easily become over-fitted based on the biased distribution formed by only a few training examples, while the ground-truth data di...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 01. Dez., Seite 9830-9843
Auteur principal: Yang, Shuo (Auteur)
Autres auteurs: Wu, Songhua, Liu, Tongliang, Xu, Min
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article