Bridging the Gap Between Few-Shot and Many-Shot Learning via Distribution Calibration

A major gap between few-shot and many-shot learning is the data distribution empirically oserved by the model during training. In few-shot learning, the learned model can easily become over-fitted based on the biased distribution formed by only a few training examples, while the ground-truth data di...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 01. Dez., Seite 9830-9843
1. Verfasser: Yang, Shuo (VerfasserIn)
Weitere Verfasser: Wu, Songhua, Liu, Tongliang, Xu, Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article