Bridging the Gap Between Few-Shot and Many-Shot Learning via Distribution Calibration
A major gap between few-shot and many-shot learning is the data distribution empirically oserved by the model during training. In few-shot learning, the learned model can easily become over-fitted based on the biased distribution formed by only a few training examples, while the ground-truth data di...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 01. Dez., Seite 9830-9843 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |