PRIN/SPRIN : On Extracting Point-Wise Rotation Invariant Features

Point cloud analysis without pose priors is very challenging in real applications, as the orientations of point clouds are often unknown. In this paper, we propose a brand new point-set learning framework PRIN, namely, Point-wise Rotation Invariant Network, focusing on rotation invariant feature ext...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 25. Dez., Seite 9489-9502
1. Verfasser: You, Yang (VerfasserIn)
Weitere Verfasser: Lou, Yujing, Shi, Ruoxi, Liu, Qi, Tai, Yu-Wing, Ma, Lizhuang, Wang, Weiming, Lu, Cewu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM333594827
003 DE-627
005 20231225221951.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3130590  |2 doi 
028 5 2 |a pubmed24n1111.xml 
035 |a (DE-627)NLM333594827 
035 |a (NLM)34822324 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a You, Yang  |e verfasserin  |4 aut 
245 1 0 |a PRIN/SPRIN  |b On Extracting Point-Wise Rotation Invariant Features 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Point cloud analysis without pose priors is very challenging in real applications, as the orientations of point clouds are often unknown. In this paper, we propose a brand new point-set learning framework PRIN, namely, Point-wise Rotation Invariant Network, focusing on rotation invariant feature extraction in point clouds analysis. We construct spherical signals by Density Aware Adaptive Sampling to deal with distorted point distributions in spherical space. Spherical Voxel Convolution and Point Re-sampling are proposed to extract rotation invariant features for each point. In addition, we extend PRIN to a sparse version called SPRIN, which directly operates on sparse point clouds. Both PRIN and SPRIN can be applied to tasks ranging from object classification, part segmentation, to 3D feature matching and label alignment. Results show that, on the dataset with randomly rotated point clouds, SPRIN demonstrates better performance than state-of-the-art methods without any data augmentation. We also provide thorough theoretical proof and analysis for point-wise rotation invariance achieved by our methods. The code to reproduce our results will be made publicly available 
650 4 |a Journal Article 
700 1 |a Lou, Yujing  |e verfasserin  |4 aut 
700 1 |a Shi, Ruoxi  |e verfasserin  |4 aut 
700 1 |a Liu, Qi  |e verfasserin  |4 aut 
700 1 |a Tai, Yu-Wing  |e verfasserin  |4 aut 
700 1 |a Ma, Lizhuang  |e verfasserin  |4 aut 
700 1 |a Wang, Weiming  |e verfasserin  |4 aut 
700 1 |a Lu, Cewu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 25. Dez., Seite 9489-9502  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:25  |g month:12  |g pages:9489-9502 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3130590  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 25  |c 12  |h 9489-9502