|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM333594827 |
003 |
DE-627 |
005 |
20231225221951.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2021.3130590
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1111.xml
|
035 |
|
|
|a (DE-627)NLM333594827
|
035 |
|
|
|a (NLM)34822324
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a You, Yang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a PRIN/SPRIN
|b On Extracting Point-Wise Rotation Invariant Features
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.11.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Point cloud analysis without pose priors is very challenging in real applications, as the orientations of point clouds are often unknown. In this paper, we propose a brand new point-set learning framework PRIN, namely, Point-wise Rotation Invariant Network, focusing on rotation invariant feature extraction in point clouds analysis. We construct spherical signals by Density Aware Adaptive Sampling to deal with distorted point distributions in spherical space. Spherical Voxel Convolution and Point Re-sampling are proposed to extract rotation invariant features for each point. In addition, we extend PRIN to a sparse version called SPRIN, which directly operates on sparse point clouds. Both PRIN and SPRIN can be applied to tasks ranging from object classification, part segmentation, to 3D feature matching and label alignment. Results show that, on the dataset with randomly rotated point clouds, SPRIN demonstrates better performance than state-of-the-art methods without any data augmentation. We also provide thorough theoretical proof and analysis for point-wise rotation invariance achieved by our methods. The code to reproduce our results will be made publicly available
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Lou, Yujing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Ruoxi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Qi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tai, Yu-Wing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Lizhuang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Weiming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Cewu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 44(2022), 12 vom: 25. Dez., Seite 9489-9502
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:44
|g year:2022
|g number:12
|g day:25
|g month:12
|g pages:9489-9502
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2021.3130590
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 44
|j 2022
|e 12
|b 25
|c 12
|h 9489-9502
|