Deep Learning Unlocks X-ray Microtomography Segmentation of Multiclass Microdamage in Heterogeneous Materials

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 11 vom: 01. März, Seite e2107817
1. Verfasser: Kopp, Reed (VerfasserIn)
Weitere Verfasser: Joseph, Joshua, Ni, Xinchen, Roy, Nicholas, Wardle, Brian L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 3D multiclass damage deep learning heterogeneous materials machine learning material characterization
LEADER 01000naa a22002652 4500
001 NLM333373979
003 DE-627
005 20231225221531.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202107817  |2 doi 
028 5 2 |a pubmed24n1111.xml 
035 |a (DE-627)NLM333373979 
035 |a (NLM)34800056 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kopp, Reed  |e verfasserin  |4 aut 
245 1 0 |a Deep Learning Unlocks X-ray Microtomography Segmentation of Multiclass Microdamage in Heterogeneous Materials 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.03.2022 
500 |a Date Revised 21.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Four-dimensional quantitative characterization of heterogeneous materials using in situ synchrotron radiation computed tomography can reveal 3D sub-micrometer features, particularly damage, evolving under load, leading to improved materials. However, dataset size and complexity increasingly require time-intensive and subjective semi-automatic segmentations. Here, the first deep learning (DL) convolutional neural network (CNN) segmentation of multiclass microscale damage in heterogeneous bulk materials is presented, teaching on advanced aerospace-grade composite damage using ≈65 000 (trained) human-segmented tomograms. The trained CNN machine segments complex and sparse (<<1% of volume) composite damage classes to ≈99.99% agreement, unlocking both objectivity and efficiency, with nearly 100% of the human time eliminated, which traditional rule-based algorithms do not approach. The trained machine is found to perform as well or better than the human due to "machine-discovered" human segmentation error, with machine improvements manifesting primarily as new damage discovery and segmentation augmentation/extension in artifact-rich tomograms. Interrogating a high-level network hyperparametric space on two material configurations, DL is found to be a disruptive approach to quantitative structure-property characterization, enabling high-throughput knowledge creation (accelerated by two orders of magnitude) via generalizable, ultrahigh-resolution feature segmentation 
650 4 |a Journal Article 
650 4 |a 3D multiclass damage 
650 4 |a deep learning 
650 4 |a heterogeneous materials 
650 4 |a machine learning 
650 4 |a material characterization 
700 1 |a Joseph, Joshua  |e verfasserin  |4 aut 
700 1 |a Ni, Xinchen  |e verfasserin  |4 aut 
700 1 |a Roy, Nicholas  |e verfasserin  |4 aut 
700 1 |a Wardle, Brian L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 11 vom: 01. März, Seite e2107817  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:11  |g day:01  |g month:03  |g pages:e2107817 
856 4 0 |u http://dx.doi.org/10.1002/adma.202107817  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 11  |b 01  |c 03  |h e2107817