Deep Learning Unlocks X-ray Microtomography Segmentation of Multiclass Microdamage in Heterogeneous Materials

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 11 vom: 01. März, Seite e2107817
1. Verfasser: Kopp, Reed (VerfasserIn)
Weitere Verfasser: Joseph, Joshua, Ni, Xinchen, Roy, Nicholas, Wardle, Brian L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 3D multiclass damage deep learning heterogeneous materials machine learning material characterization
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Four-dimensional quantitative characterization of heterogeneous materials using in situ synchrotron radiation computed tomography can reveal 3D sub-micrometer features, particularly damage, evolving under load, leading to improved materials. However, dataset size and complexity increasingly require time-intensive and subjective semi-automatic segmentations. Here, the first deep learning (DL) convolutional neural network (CNN) segmentation of multiclass microscale damage in heterogeneous bulk materials is presented, teaching on advanced aerospace-grade composite damage using ≈65 000 (trained) human-segmented tomograms. The trained CNN machine segments complex and sparse (<<1% of volume) composite damage classes to ≈99.99% agreement, unlocking both objectivity and efficiency, with nearly 100% of the human time eliminated, which traditional rule-based algorithms do not approach. The trained machine is found to perform as well or better than the human due to "machine-discovered" human segmentation error, with machine improvements manifesting primarily as new damage discovery and segmentation augmentation/extension in artifact-rich tomograms. Interrogating a high-level network hyperparametric space on two material configurations, DL is found to be a disruptive approach to quantitative structure-property characterization, enabling high-throughput knowledge creation (accelerated by two orders of magnitude) via generalizable, ultrahigh-resolution feature segmentation
Beschreibung:Date Completed 21.03.2022
Date Revised 21.03.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202107817