|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM332865274 |
003 |
DE-627 |
005 |
20231225220445.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TVCG.2021.3125576
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1109.xml
|
035 |
|
|
|a (DE-627)NLM332865274
|
035 |
|
|
|a (NLM)34748493
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Espadoto, Mateus
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a UnProjection
|b Leveraging Inverse-Projections for Visual Analytics of High-Dimensional Data
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 05.04.2023
|
500 |
|
|
|a Date Revised 05.04.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Projection techniques are often used to visualize high-dimensional data, allowing users to better understand the overall structure of multi-dimensional spaces on a 2D screen. Although many such methods exist, comparably little work has been done on generalizable methods of inverse-projection - the process of mapping the projected points, or more generally, the projection space back to the original high-dimensional space. In this article we present NNInv, a deep learning technique with the ability to approximate the inverse of any projection or mapping. NNInv learns to reconstruct high-dimensional data from any arbitrary point on a 2D projection space, giving users the ability to interact with the learned high-dimensional representation in a visual analytics system. We provide an analysis of the parameter space of NNInv, and offer guidance in selecting these parameters. We extend validation of the effectiveness of NNInv through a series of quantitative and qualitative analyses. We then demonstrate the method's utility by applying it to three visualization tasks: interactive instance interpolation, classifier agreement, and gradient visualization
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Appleby, Gabriel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Suh, Ashley
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cashman, Dylan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Mingwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Scheidegger, Carlos
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Anderson, Erik W
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chang, Remco
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Telea, Alexandru C
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on visualization and computer graphics
|d 1996
|g 29(2023), 2 vom: 08. Feb., Seite 1559-1572
|w (DE-627)NLM098269445
|x 1941-0506
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2023
|g number:2
|g day:08
|g month:02
|g pages:1559-1572
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TVCG.2021.3125576
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2023
|e 2
|b 08
|c 02
|h 1559-1572
|