UnProjection : Leveraging Inverse-Projections for Visual Analytics of High-Dimensional Data

Projection techniques are often used to visualize high-dimensional data, allowing users to better understand the overall structure of multi-dimensional spaces on a 2D screen. Although many such methods exist, comparably little work has been done on generalizable methods of inverse-projection - the p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 2 vom: 08. Feb., Seite 1559-1572
1. Verfasser: Espadoto, Mateus (VerfasserIn)
Weitere Verfasser: Appleby, Gabriel, Suh, Ashley, Cashman, Dylan, Li, Mingwei, Scheidegger, Carlos, Anderson, Erik W, Chang, Remco, Telea, Alexandru C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM332865274
003 DE-627
005 20231225220445.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3125576  |2 doi 
028 5 2 |a pubmed24n1109.xml 
035 |a (DE-627)NLM332865274 
035 |a (NLM)34748493 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Espadoto, Mateus  |e verfasserin  |4 aut 
245 1 0 |a UnProjection  |b Leveraging Inverse-Projections for Visual Analytics of High-Dimensional Data 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Projection techniques are often used to visualize high-dimensional data, allowing users to better understand the overall structure of multi-dimensional spaces on a 2D screen. Although many such methods exist, comparably little work has been done on generalizable methods of inverse-projection - the process of mapping the projected points, or more generally, the projection space back to the original high-dimensional space. In this article we present NNInv, a deep learning technique with the ability to approximate the inverse of any projection or mapping. NNInv learns to reconstruct high-dimensional data from any arbitrary point on a 2D projection space, giving users the ability to interact with the learned high-dimensional representation in a visual analytics system. We provide an analysis of the parameter space of NNInv, and offer guidance in selecting these parameters. We extend validation of the effectiveness of NNInv through a series of quantitative and qualitative analyses. We then demonstrate the method's utility by applying it to three visualization tasks: interactive instance interpolation, classifier agreement, and gradient visualization 
650 4 |a Journal Article 
700 1 |a Appleby, Gabriel  |e verfasserin  |4 aut 
700 1 |a Suh, Ashley  |e verfasserin  |4 aut 
700 1 |a Cashman, Dylan  |e verfasserin  |4 aut 
700 1 |a Li, Mingwei  |e verfasserin  |4 aut 
700 1 |a Scheidegger, Carlos  |e verfasserin  |4 aut 
700 1 |a Anderson, Erik W  |e verfasserin  |4 aut 
700 1 |a Chang, Remco  |e verfasserin  |4 aut 
700 1 |a Telea, Alexandru C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 2 vom: 08. Feb., Seite 1559-1572  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:2  |g day:08  |g month:02  |g pages:1559-1572 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3125576  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 2  |b 08  |c 02  |h 1559-1572