Probing Electronic States in Monolayer Semiconductors through Static and Transient Third-Harmonic Spectroscopies
© 2021 Wiley-VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 3 vom: 06. Jan., Seite e2107104 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2022
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article electronic states monolayer transition metal dichalcogenides static third-harmonic spectroscopy third-harmonic generation transient third-harmonic spectroscopy |
Résumé: | © 2021 Wiley-VCH GmbH. Electronic states and their dynamics are of critical importance for electronic and optoelectronic applications. Here, various relevant electronic states in monolayer MoS2 , such as multiple excitonic Rydberg states and free-particle energy bands are probed with a high relative contrast of up to ≥200 via broadband (from ≈1.79 to 3.10 eV) static third-harmonic spectroscopy (THS), which is further supported by theoretical calculations. Moreover, transient THS is introduced to demonstrate that third-harmonic generation can be all-optically modulated with a modulation depth exceeding ≈94% at ≈2.18 eV, providing direct evidence of dominant carrier relaxation processes associated with carrier-exciton and carrier-phonon interactions. The results indicate that static and transient THS are not only promising techniques for the characterization of monolayer semiconductors and their heterostructures, but also a potential platform for disruptive photonic and optoelectronic applications, including all-optical modulation and imaging |
---|---|
Description: | Date Revised 21.01.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202107104 |