Extreme Environmental Thermal Shock Induced Dislocation-Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 2 vom: 05. Jan., Seite e2106973
1. Verfasser: Liu, Siliang (VerfasserIn)
Weitere Verfasser: Shen, Yi, Zhang, Yang, Cui, Baihua, Xi, Shibo, Zhang, Jinfeng, Xu, Lianyong, Zhu, Shuze, Chen, Yanan, Deng, Yida, Hu, Wenbin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article dislocations environmental thermal shock hydrogen evolution reaction (HER) single metal nanoparticles strain
LEADER 01000naa a22002652 4500
001 NLM332170764
003 DE-627
005 20231225215039.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202106973  |2 doi 
028 5 2 |a pubmed24n1107.xml 
035 |a (DE-627)NLM332170764 
035 |a (NLM)34676920 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Siliang  |e verfasserin  |4 aut 
245 1 0 |a Extreme Environmental Thermal Shock Induced Dislocation-Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Crystal structure engineering of nanomaterials is crucial for the design of electrocatalysts. Inducing dislocations is an efficient approach to generate strain effects in nanomaterials to optimize the crystal and electronic structures and improve the catalytic properties. However, it is almost impossible to produce and retain dislocations in commercial mainstream catalysts, such as single metal platinum (Pt) catalysts. In this work, a non-equilibrium high-temperature (>1400 K) thermal-shock method is reported to induce rich dislocations in Pt nanocrystals (Dr-Pt). The method is performed in an extreme environment (≈77 K) created by liquid nitrogen. The dislocations induced within milliseconds by thermal and structural stress during the crystallization process are kinetically frozen at an ultrafast cooling rate. The high-energy surface structures with dislocation-induced strain effects can prevent surface restructuring during catalysis. The findings indicate that a novel extreme environmental high-temperature thermal-shock method can successfully introduce rich dislocations in Pt nanoparticles and significantly boost its hydrogen evolution reaction performance 
650 4 |a Journal Article 
650 4 |a dislocations 
650 4 |a environmental thermal shock 
650 4 |a hydrogen evolution reaction (HER) 
650 4 |a single metal nanoparticles 
650 4 |a strain 
700 1 |a Shen, Yi  |e verfasserin  |4 aut 
700 1 |a Zhang, Yang  |e verfasserin  |4 aut 
700 1 |a Cui, Baihua  |e verfasserin  |4 aut 
700 1 |a Xi, Shibo  |e verfasserin  |4 aut 
700 1 |a Zhang, Jinfeng  |e verfasserin  |4 aut 
700 1 |a Xu, Lianyong  |e verfasserin  |4 aut 
700 1 |a Zhu, Shuze  |e verfasserin  |4 aut 
700 1 |a Chen, Yanan  |e verfasserin  |4 aut 
700 1 |a Deng, Yida  |e verfasserin  |4 aut 
700 1 |a Hu, Wenbin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 2 vom: 05. Jan., Seite e2106973  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:2  |g day:05  |g month:01  |g pages:e2106973 
856 4 0 |u http://dx.doi.org/10.1002/adma.202106973  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 2  |b 05  |c 01  |h e2106973