Ultrafast Thermal Imprinting of Plasmonic Hotspots

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 49 vom: 30. Dez., Seite e2105192
1. Verfasser: Askes, Sven H C (VerfasserIn)
Weitere Verfasser: Garnett, Erik C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article heterogeneous catalysis nanoscale heat photothermal plasmonics thermal hotspots transition metal nitrides ultrafast heating
LEADER 01000caa a22002652 4500
001 NLM33164679X
003 DE-627
005 20241013231825.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202105192  |2 doi 
028 5 2 |a pubmed24n1566.xml 
035 |a (DE-627)NLM33164679X 
035 |a (NLM)34623711 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Askes, Sven H C  |e verfasserin  |4 aut 
245 1 0 |a Ultrafast Thermal Imprinting of Plasmonic Hotspots 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Plasmonic photochemistry is driven by a rich collection of near-field, hot charge carrier, energy transfer, and thermal effects, most often accomplished by continuous wave illumination. Heat generation is usually considered undesirable, because noble metal nanoparticles heat up isotropically, losing the extreme energy confinement of the optical resonance. Here it is demonstrated through optical and heat-transfer modelling that the judicious choice of nanoreactor geometry and material enables the direct thermal imprint of plasmonic optical absorption hotspots onto the lattice with high fidelity. Transition metal nitrides (TMNs, e.g., TiN/HfN) embody the ideal material requirements, where ultrafast electron-phonon coupling prevents fast electronic heat dissipation and low thermal conductivity prolongs the heat confinement. The extreme energy confinement leads to unprecedented peak temperatures and internal heat gradients (>10 K nm-1 ) that cannot be achieved using noble metals or any current heating method. TMN nanoreactors consequently yield up to ten thousand times more product in pulsed photothermal chemical conversion compared with noble metals (Ag, Au, Cu). These findings open up a completely unexplored realm of nano-photochemistry, where adjacent reaction centers experience substantially different temperatures for hundreds of picoseconds, long enough for bond breaking to occur 
650 4 |a Journal Article 
650 4 |a heterogeneous catalysis 
650 4 |a nanoscale heat 
650 4 |a photothermal 
650 4 |a plasmonics 
650 4 |a thermal hotspots 
650 4 |a transition metal nitrides 
650 4 |a ultrafast heating 
700 1 |a Garnett, Erik C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 49 vom: 30. Dez., Seite e2105192  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:49  |g day:30  |g month:12  |g pages:e2105192 
856 4 0 |u http://dx.doi.org/10.1002/adma.202105192  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 49  |b 30  |c 12  |h e2105192