|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM331318296 |
003 |
DE-627 |
005 |
20231225213210.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202104623
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1104.xml
|
035 |
|
|
|a (DE-627)NLM331318296
|
035 |
|
|
|a (NLM)34590356
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hu, Songbai
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a High-Conductive Protonated Layered Oxides from H2 O Vapor-Annealed Brownmillerites
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.12.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Protonated 3d transition-metal oxides often display low electronic conduction, which hampers their application in electric, magnetic, thermoelectric, and catalytic fields. Electronic conduction can be enhanced by co-inserting oxygen acceptors simultaneously. However, the currently used redox approaches hinder protons and oxygen ions co-insertion due to the selective switching issues. Here, a thermal hydration strategy for systematically exploring the synthesis of conductive protonated oxides from 3d transition-metal oxides is introduced. This strategy is illustrated by synthesizing a novel layered-oxide SrCoO3 H from the brownmillerite SrCoO2.5 . Compared to the insulating SrCoO2.5 , SrCoO3 H exhibits an unprecedented high electronic conductivity above room temperature, water uptake at 250 °C, and a thermoelectric power factor of up to 1.2 mW K-2 m-1 at 300 K. These findings open up opportunities for creating high-conductive protonated layered oxides by protons and oxygen ions co-doping
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a brownmillerite
|
650 |
|
4 |
|a conductivity
|
650 |
|
4 |
|a layered oxides
|
650 |
|
4 |
|a protons
|
650 |
|
4 |
|a water vapor
|
700 |
1 |
|
|a Zhu, Yuanmin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Wenqiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Xiaowen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ji, Yanjiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ye, Mao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Cai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Qi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Sixia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Jiaou
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Junling
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Jiaqing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cazorla, Claudio
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Lang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 48 vom: 01. Dez., Seite e2104623
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:48
|g day:01
|g month:12
|g pages:e2104623
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202104623
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 48
|b 01
|c 12
|h e2104623
|