High-Conductive Protonated Layered Oxides from H2 O Vapor-Annealed Brownmillerites
© 2021 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 48 vom: 01. Dez., Seite e2104623 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article brownmillerite conductivity layered oxides protons water vapor |
Zusammenfassung: | © 2021 Wiley-VCH GmbH. Protonated 3d transition-metal oxides often display low electronic conduction, which hampers their application in electric, magnetic, thermoelectric, and catalytic fields. Electronic conduction can be enhanced by co-inserting oxygen acceptors simultaneously. However, the currently used redox approaches hinder protons and oxygen ions co-insertion due to the selective switching issues. Here, a thermal hydration strategy for systematically exploring the synthesis of conductive protonated oxides from 3d transition-metal oxides is introduced. This strategy is illustrated by synthesizing a novel layered-oxide SrCoO3 H from the brownmillerite SrCoO2.5 . Compared to the insulating SrCoO2.5 , SrCoO3 H exhibits an unprecedented high electronic conductivity above room temperature, water uptake at 250 °C, and a thermoelectric power factor of up to 1.2 mW K-2 m-1 at 300 K. These findings open up opportunities for creating high-conductive protonated layered oxides by protons and oxygen ions co-doping |
---|---|
Beschreibung: | Date Revised 01.12.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202104623 |