Controllable Doping in 2D Layered Materials
© 2021 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 48 vom: 01. Dez., Seite e2104942 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article controllable doping electronic materials lattice deformation layered materials optoelectronics |
Zusammenfassung: | © 2021 Wiley-VCH GmbH. For each generation of semiconductors, the issue of doping techniques is always placed at the top of the priority list since it determines whether a material can be used in the electronic and optoelectronic industry or not. When it comes to 2D materials, significant challenges have been found in controllably doping 2D semiconductors into p- or n-type, let alone developing a continuous control of this process. Here, a unique self-modulated doping characteristic in 2D layered materials such as PtSSe, PtS0.8 Se1.2 , PdSe2 , and WSe2 is reported. The varying number of vertically stacked-monolayers is the critical factor for controllably tuning the same material from p-type to intrinsic, and to n-type doping. Importantly, it is found that the thickness-induced lattice deformation makes defects in PtSSe transit from Pt vacancies to anion vacancies based on dynamic and thermodynamic analyses, which leads to p- and n-type conductance, respectively. By thickness-modulated doping, WSe2 diode exhibits a high rectification ratio of 4400 and a large open-circuit voltage of 0.38 V. Meanwhile, the PtSSe detector overcomes the shortcoming of large dark-current in narrow-bandgap optoelectronic devices. All these findings provide a brand-new perspective for fundamental scientific studies and applications |
---|---|
Beschreibung: | Date Revised 01.12.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202104942 |