Coupling Glucose-Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 48 vom: 05. Dez., Seite e2104791
1. Verfasser: Zhang, Yiqiong (VerfasserIn)
Weitere Verfasser: Zhou, Bo, Wei, Zengxi, Zhou, Wang, Wang, Dongdong, Tian, Jing, Wang, Tehua, Zhao, Shuangliang, Liu, Jilei, Tao, Li, Wang, Shuangyin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Cu(I)/Cu(II) redox copper oxide electrocatalysis hydrogen production organic electrooxidation
LEADER 01000naa a22002652 4500
001 NLM331035685
003 DE-627
005 20231225212600.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202104791  |2 doi 
028 5 2 |a pubmed24n1103.xml 
035 |a (DE-627)NLM331035685 
035 |a (NLM)34561909 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Yiqiong  |e verfasserin  |4 aut 
245 1 0 |a Coupling Glucose-Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Water electrolysis is a sustainable technology for hydrogen production since this process can utilize the intermittent electricity generated by renewable energy such as solar, wind, and hydro. However, the large-scale application of this process is restricted by the high electricity consumption due to the large potential gap (>1.23 V) between the anodic oxygen evolution reaction and the cathodic hydrogen evolution reaction (HER). Herein, a novel and efficient hydrogen production system is developed for coupling glucose-assisted Cu(I)/Cu(II) redox with HER. The onset potential of the electrooxidation of Cu(I) to Cu(II) is as low as 0.7 VRHE (vs reversible hydrogen electrode). In situ Raman spectroscopy, ex situ X-ray photoelectron spectroscopy, and density functional theory calculation demonstrates that glucose in the electrolyte can reduce the Cu(II) into Cu(I) instantaneously via a thermocatalysis process, thus completing the cycle of Cu(I)/Cu(II) redox. The assembled electrolyzer only requires a voltage input of 0.92 V to achieve a current density of 100 mA cm-2 . Consequently, the electricity consumption for per cubic H2 produced in the system is 2.2 kWh, only half of the value for conventional water electrolysis (4.5 kWh). This work provides a promising strategy for the low-cost, efficient production of high-purity H2 
650 4 |a Journal Article 
650 4 |a Cu(I)/Cu(II) redox 
650 4 |a copper oxide 
650 4 |a electrocatalysis 
650 4 |a hydrogen production 
650 4 |a organic electrooxidation 
700 1 |a Zhou, Bo  |e verfasserin  |4 aut 
700 1 |a Wei, Zengxi  |e verfasserin  |4 aut 
700 1 |a Zhou, Wang  |e verfasserin  |4 aut 
700 1 |a Wang, Dongdong  |e verfasserin  |4 aut 
700 1 |a Tian, Jing  |e verfasserin  |4 aut 
700 1 |a Wang, Tehua  |e verfasserin  |4 aut 
700 1 |a Zhao, Shuangliang  |e verfasserin  |4 aut 
700 1 |a Liu, Jilei  |e verfasserin  |4 aut 
700 1 |a Tao, Li  |e verfasserin  |4 aut 
700 1 |a Wang, Shuangyin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 48 vom: 05. Dez., Seite e2104791  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:48  |g day:05  |g month:12  |g pages:e2104791 
856 4 0 |u http://dx.doi.org/10.1002/adma.202104791  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 48  |b 05  |c 12  |h e2104791