Graphene Oxide-Supported Microwell Grids for Preparing Cryo-EM Samples with Controlled Ice Thickness

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 43 vom: 27. Okt., Seite e2102991
1. Verfasser: Kang, Min-Ho (VerfasserIn)
Weitere Verfasser: Park, Junsun, Kang, Sungsu, Jeon, Sungho, Lee, Minyoung, Shim, Ji-Yeon, Lee, Jeeyoung, Jeon, Tae Jin, Ahn, Min Kyung, Lee, Sung Mi, Kwon, Ohkyung, Kim, Byung Hyo, Meyerson, Joel R, Lee, Min Jae, Lim, Kwang-Il, Roh, Soung-Hun, Lee, Won Chul, Park, Jungwon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article cryogenic-electron microscope graphene oxide microelectromechanical systems nanomaterials vitreous ice thickness Graphite 7782-42-5 Apoferritins 9013-31-4 mehr... Ice Fructose-Bisphosphate Aldolase EC 4.1.2.13 Silicon Compounds Chaperonin 60 silicon nitride QHB8T06IDK tau Proteins
LEADER 01000caa a22002652 4500
001 NLM33052786X
003 DE-627
005 20240725232820.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202102991  |2 doi 
028 5 2 |a pubmed24n1481.xml 
035 |a (DE-627)NLM33052786X 
035 |a (NLM)34510585 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kang, Min-Ho  |e verfasserin  |4 aut 
245 1 0 |a Graphene Oxide-Supported Microwell Grids for Preparing Cryo-EM Samples with Controlled Ice Thickness 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.07.2024 
500 |a Date Revised 24.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Cryogenic-electron microscopy (cryo-EM) is the preferred method to determine 3D structures of proteins and to study diverse material systems that intrinsically have radiation or air sensitivity. Current cryo-EM sample preparation methods provide limited control over the sample quality, which limits the efficiency and high throughput of 3D structure analysis. This is partly because it is difficult to control the thickness of the vitreous ice that embeds specimens, in the range of nanoscale, depending on the size and type of materials of interest. Thus, there is a need for fine regulation of the thickness of vitreous ice to deliver consistent high signal-to-noise ratios for low-contrast biological specimens. Herein, an advanced silicon-chip-based device is developed which has a regular array of micropatterned holes with a graphene oxide (GO) window on freestanding silicon nitride (Six Ny ). Accurately regulated depths of micropatterned holes enable precise control of vitreous ice thickness. Furthermore, GO window with affinity for biomolecules can facilitate concentration of the sample molecules at a higher level. Incorporation of micropatterned chips with a GO window enhances cryo-EM imaging for various nanoscale biological samples including human immunodeficiency viral particles, groEL tetradecamers, apoferritin octahedral, aldolase homotetramer complexes, and tau filaments, as well as inorganic materials 
650 4 |a Journal Article 
650 4 |a cryogenic-electron microscope 
650 4 |a graphene oxide 
650 4 |a microelectromechanical systems 
650 4 |a nanomaterials 
650 4 |a vitreous ice thickness 
650 7 |a Graphite  |2 NLM 
650 7 |a 7782-42-5  |2 NLM 
650 7 |a graphene oxide  |2 NLM 
650 7 |a Apoferritins  |2 NLM 
650 7 |a 9013-31-4  |2 NLM 
650 7 |a Ice  |2 NLM 
650 7 |a Fructose-Bisphosphate Aldolase  |2 NLM 
650 7 |a EC 4.1.2.13  |2 NLM 
650 7 |a Silicon Compounds  |2 NLM 
650 7 |a Chaperonin 60  |2 NLM 
650 7 |a silicon nitride  |2 NLM 
650 7 |a QHB8T06IDK  |2 NLM 
650 7 |a tau Proteins  |2 NLM 
700 1 |a Park, Junsun  |e verfasserin  |4 aut 
700 1 |a Kang, Sungsu  |e verfasserin  |4 aut 
700 1 |a Jeon, Sungho  |e verfasserin  |4 aut 
700 1 |a Lee, Minyoung  |e verfasserin  |4 aut 
700 1 |a Shim, Ji-Yeon  |e verfasserin  |4 aut 
700 1 |a Lee, Jeeyoung  |e verfasserin  |4 aut 
700 1 |a Jeon, Tae Jin  |e verfasserin  |4 aut 
700 1 |a Ahn, Min Kyung  |e verfasserin  |4 aut 
700 1 |a Lee, Sung Mi  |e verfasserin  |4 aut 
700 1 |a Kwon, Ohkyung  |e verfasserin  |4 aut 
700 1 |a Kim, Byung Hyo  |e verfasserin  |4 aut 
700 1 |a Meyerson, Joel R  |e verfasserin  |4 aut 
700 1 |a Lee, Min Jae  |e verfasserin  |4 aut 
700 1 |a Lim, Kwang-Il  |e verfasserin  |4 aut 
700 1 |a Roh, Soung-Hun  |e verfasserin  |4 aut 
700 1 |a Lee, Won Chul  |e verfasserin  |4 aut 
700 1 |a Park, Jungwon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 43 vom: 27. Okt., Seite e2102991  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:43  |g day:27  |g month:10  |g pages:e2102991 
856 4 0 |u http://dx.doi.org/10.1002/adma.202102991  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 43  |b 27  |c 10  |h e2102991