|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM330229303 |
003 |
DE-627 |
005 |
20231225210833.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202101413
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1100.xml
|
035 |
|
|
|a (DE-627)NLM330229303
|
035 |
|
|
|a (NLM)34480499
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liang, Gemeng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Crystallographic-Site-Specific Structural Engineering Enables Extraordinary Electrochemical Performance of High-Voltage LiNi0.5 Mn1.5 O4 Spinel Cathodes for Lithium-Ion Batteries
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.11.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a The development of reliable and safe high-energy-density lithium-ion batteries is hindered by the structural instability of cathode materials during cycling, arising as a result of detrimental phase transformations occurring at high operating voltages alongside the loss of active materials induced by transition metal dissolution. Originating from the fundamental structure/function relation of battery materials, the authors purposefully perform crystallographic-site-specific structural engineering on electrode material structure, using the high-voltage LiNi0.5 Mn1.5 O4 (LNMO) cathode as a representative, which directly addresses the root source of structural instability of the Fd 3 ¯ m structure. By employing Sb as a dopant to modify the specific issue-involved 16c and 16d sites simultaneously, the authors successfully transform the detrimental two-phase reaction occurring at high-voltage into a preferential solid-solution reaction and significantly suppress the loss of Mn from the LNMO structure. The modified LNMO material delivers an impressive 99% of its theoretical specific capacity at 1 C, and maintains 87.6% and 72.4% of initial capacity after 1500 and 3000 cycles, respectively. The issue-tracing site-specific structural tailoring demonstrated for this material will facilitate the rapid development of high-energy-density materials for lithium-ion batteries
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a crystallographic-site-specific
|
650 |
|
4 |
|a high-voltage spinel cathodes
|
650 |
|
4 |
|a lithium-ion batteries
|
650 |
|
4 |
|a structural engineering
|
650 |
|
4 |
|a structure/function relation of materials
|
700 |
1 |
|
|a Peterson, Vanessa K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Zhibin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Shilin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hao, Junnan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Cheng-Zhang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chuang, Cheng-Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Jyh-Fu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Jue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Leniec, Grzegorz
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kaczmarek, Sławomir Maksymilian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a D'Angelo, Anita M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Johannessen, Bernt
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Thomsen, Lars
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pang, Wei Kong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Zaiping
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 44 vom: 01. Nov., Seite e2101413
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:44
|g day:01
|g month:11
|g pages:e2101413
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202101413
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 44
|b 01
|c 11
|h e2101413
|