Crystallographic-Site-Specific Structural Engineering Enables Extraordinary Electrochemical Performance of High-Voltage LiNi0.5 Mn1.5 O4 Spinel Cathodes for Lithium-Ion Batteries

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 44 vom: 01. Nov., Seite e2101413
1. Verfasser: Liang, Gemeng (VerfasserIn)
Weitere Verfasser: Peterson, Vanessa K, Wu, Zhibin, Zhang, Shilin, Hao, Junnan, Lu, Cheng-Zhang, Chuang, Cheng-Hao, Lee, Jyh-Fu, Liu, Jue, Leniec, Grzegorz, Kaczmarek, Sławomir Maksymilian, D'Angelo, Anita M, Johannessen, Bernt, Thomsen, Lars, Pang, Wei Kong, Guo, Zaiping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article crystallographic-site-specific high-voltage spinel cathodes lithium-ion batteries structural engineering structure/function relation of materials
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
The development of reliable and safe high-energy-density lithium-ion batteries is hindered by the structural instability of cathode materials during cycling, arising as a result of detrimental phase transformations occurring at high operating voltages alongside the loss of active materials induced by transition metal dissolution. Originating from the fundamental structure/function relation of battery materials, the authors purposefully perform crystallographic-site-specific structural engineering on electrode material structure, using the high-voltage LiNi0.5 Mn1.5 O4 (LNMO) cathode as a representative, which directly addresses the root source of structural instability of the Fd 3 ¯ m structure. By employing Sb as a dopant to modify the specific issue-involved 16c and 16d sites simultaneously, the authors successfully transform the detrimental two-phase reaction occurring at high-voltage into a preferential solid-solution reaction and significantly suppress the loss of Mn from the LNMO structure. The modified LNMO material delivers an impressive 99% of its theoretical specific capacity at 1 C, and maintains 87.6% and 72.4% of initial capacity after 1500 and 3000 cycles, respectively. The issue-tracing site-specific structural tailoring demonstrated for this material will facilitate the rapid development of high-energy-density materials for lithium-ion batteries
Beschreibung:Date Revised 01.11.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202101413