Long-Range Augmented Reality with Dynamic Occlusion Rendering

Proper occlusion based rendering is very important to achieve realism in all indoor and outdoor Augmented Reality (AR) applications. This paper addresses the problem of fast and accurate dynamic occlusion reasoning by real objects in the scene for large scale outdoor AR applications. Conceptually, p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 11 vom: 15. Nov., Seite 4236-4244
1. Verfasser: Sizintsev, Mikhail (VerfasserIn)
Weitere Verfasser: Mithun, Niluthpol Chowdhury, Chiu, Han-Pang, Samarasekera, Supun, Kumar, Rakesh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM329922033
003 DE-627
005 20231225210155.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3106434  |2 doi 
028 5 2 |a pubmed24n1099.xml 
035 |a (DE-627)NLM329922033 
035 |a (NLM)34449369 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sizintsev, Mikhail  |e verfasserin  |4 aut 
245 1 0 |a Long-Range Augmented Reality with Dynamic Occlusion Rendering 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Proper occlusion based rendering is very important to achieve realism in all indoor and outdoor Augmented Reality (AR) applications. This paper addresses the problem of fast and accurate dynamic occlusion reasoning by real objects in the scene for large scale outdoor AR applications. Conceptually, proper occlusion reasoning requires an estimate of depth for every point in augmented scene which is technically hard to achieve for outdoor scenarios, especially in the presence of moving objects. We propose a method to detect and automatically infer the depth for real objects in the scene without explicit detailed scene modeling and depth sensing (e.g. without using sensors such as 3D-LiDAR). Specifically, we employ instance segmentation of color image data to detect real dynamic objects in the scene and use either a top-down terrain elevation model or deep learning based monocular depth estimation model to infer their metric distance from the camera for proper occlusion reasoning in real time. The realized solution is implemented in a low latency real-time framework for video-see-though AR and is directly extendable to optical-see-through AR. We minimize latency in depth reasoning and occlusion rendering by doing semantic object tracking and prediction in video frames 
650 4 |a Journal Article 
700 1 |a Mithun, Niluthpol Chowdhury  |e verfasserin  |4 aut 
700 1 |a Chiu, Han-Pang  |e verfasserin  |4 aut 
700 1 |a Samarasekera, Supun  |e verfasserin  |4 aut 
700 1 |a Kumar, Rakesh  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 11 vom: 15. Nov., Seite 4236-4244  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:11  |g day:15  |g month:11  |g pages:4236-4244 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3106434  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 11  |b 15  |c 11  |h 4236-4244