An Optogenetics-Inspired Flexible van der Waals Optoelectronic Synapse and its Application to a Convolutional Neural Network

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 40 vom: 20. Okt., Seite e2102980
1. Verfasser: Seo, Seunghwan (VerfasserIn)
Weitere Verfasser: Lee, Je-Jun, Lee, Ryong-Gyu, Kim, Tae Hyung, Park, Sangyong, Jung, Sooyoung, Lee, Hyun-Kyu, Andreev, Maksim, Lee, Kyeong-Bae, Jung, Kil-Su, Oh, Seyong, Lee, Ho-Jun, Kim, Ki Seok, Yeom, Geun Young, Kim, Yong-Hoon, Park, Jin-Hong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D van der Waals layered materials artificial optoelectronic synapses brain-inspired computing convolutional neural networks flexible artificial synapses persistent photoconductivity effect rhenium disulfide Sulfides rhenium sulfide mehr... 12038-63-0 Rhenium 7440-15-5
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Optogenetics refers to a technique that uses light to modulate neuronal activity with a high spatiotemporal resolution, which enables the manipulation of learning and memory functions in the human brain. This strategy of controlling neuronal activity using light can be applied for the development of intelligent systems, including neuromorphic and in-memory computing systems. Herein, a flexible van der Waals (vdW) optoelectronic synapse is reported, which is a core component of optogenetics-inspired intelligent systems. This synapse is fabricated on 2D vdW layered rhenium disulfide (ReS2 ) that features an inherent photosensitive memory nature derived from the persistent photoconductivity (PPC) effect, successfully mimicking the dynamics of biological synapses. Based on first-principles calculations, the PPC effect is identified to originate from sulfur vacancies in ReS2 that have an inherent tendency to form shallow defect states near the conduction band edges and under optical excitation lead to large lattice relaxation. Finally, the feasibility of applying the synapses in optogenetics-inspired intelligent systems is demonstrated via training and inference tasks for the CIFAR-10 dataset using a convolutional neural network composed of vdW optoelectronic synapse devices
Beschreibung:Date Completed 26.01.2022
Date Revised 26.01.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202102980